Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindinsight
提交
c4c74bd6
M
mindinsight
项目概览
MindSpore
/
mindinsight
通知
7
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindinsight
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c4c74bd6
编写于
4月 18, 2020
作者:
W
wenkai
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cross-step bucket unify
上级
41034372
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
293 addition
and
5 deletion
+293
-5
mindinsight/datavisual/data_transform/events_data.py
mindinsight/datavisual/data_transform/events_data.py
+3
-1
mindinsight/datavisual/data_transform/histogram_container.py
mindinsight/datavisual/data_transform/histogram_container.py
+98
-0
mindinsight/datavisual/data_transform/ms_data_loader.py
mindinsight/datavisual/data_transform/ms_data_loader.py
+2
-1
mindinsight/datavisual/data_transform/reservoir.py
mindinsight/datavisual/data_transform/reservoir.py
+117
-0
mindinsight/datavisual/processors/histogram_processor.py
mindinsight/datavisual/processors/histogram_processor.py
+2
-3
tests/ut/datavisual/data_transform/test_histogram_container.py
.../ut/datavisual/data_transform/test_histogram_container.py
+34
-0
tests/ut/datavisual/data_transform/test_reservoir.py
tests/ut/datavisual/data_transform/test_reservoir.py
+37
-0
未找到文件。
mindinsight/datavisual/data_transform/events_data.py
浏览文件 @
c4c74bd6
...
...
@@ -93,7 +93,9 @@ class EventsData:
with
self
.
_reservoir_mutex_lock
:
if
tag
not
in
self
.
_reservoir_by_tag
:
reservoir_size
=
self
.
_get_reservoir_size
(
tensor_event
.
plugin_name
)
self
.
_reservoir_by_tag
[
tag
]
=
reservoir
.
Reservoir
(
reservoir_size
)
self
.
_reservoir_by_tag
[
tag
]
=
reservoir
.
ReservoirFactory
().
create_reservoir
(
plugin_name
,
reservoir_size
)
tensor
=
_Tensor
(
wall_time
=
tensor_event
.
wall_time
,
step
=
tensor_event
.
step
,
...
...
mindinsight/datavisual/data_transform/histogram_container.py
0 → 100644
浏览文件 @
c4c74bd6
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Histogram data container."""
import
math
from
mindinsight.datavisual.proto_files.mindinsight_summary_pb2
import
Summary
def
_mask_invalid_number
(
num
):
"""Mask invalid number to 0."""
if
math
.
isnan
(
num
)
or
math
.
isinf
(
num
):
return
type
(
num
)(
0
)
return
num
class
HistogramContainer
:
"""
Histogram data container.
Args:
histogram_message (Summary.Histogram): Histogram message in summary file.
"""
def
__init__
(
self
,
histogram_message
:
Summary
.
Histogram
):
self
.
_msg
=
histogram_message
self
.
_original_buckets
=
tuple
((
bucket
.
left
,
bucket
.
width
,
bucket
.
count
)
for
bucket
in
self
.
_msg
.
buckets
)
self
.
_max
=
_mask_invalid_number
(
histogram_message
.
max
)
self
.
_min
=
_mask_invalid_number
(
histogram_message
.
min
)
self
.
_visual_max
=
self
.
_max
self
.
_visual_min
=
self
.
_min
# default bin number
self
.
_visual_bins
=
10
self
.
_count
=
self
.
_msg
.
count
# Note that tuple is immutable, so sharing tuple is often safe.
self
.
_re_sampled_buckets
=
self
.
_original_buckets
@
property
def
max
(
self
):
"""Gets max value of the tensor."""
return
self
.
_max
@
property
def
min
(
self
):
"""Gets min value of the tensor."""
return
self
.
_min
@
property
def
count
(
self
):
"""Gets valid number count of the tensor."""
return
self
.
_count
@
property
def
original_msg
(
self
):
"""Get original proto message"""
return
self
.
_msg
def
set_visual_range
(
self
,
max_val
:
float
,
min_val
:
float
,
bins
:
int
)
->
None
:
"""
Sets visual range for later re-sampling.
It's caller's duty to ensure input is valid.
Args:
max_val (float): Max value for visual histogram.
min_val (float): Min value for visual histogram.
bins (int): Bins number for visual histogram.
"""
self
.
_visual_max
=
max_val
self
.
_visual_min
=
min_val
self
.
_visual_bins
=
bins
# mark _re_sampled_buckets to empty
self
.
_re_sampled_buckets
=
()
def
_re_sample_buckets
(
self
):
# Will call re-sample logic in later PR.
self
.
_re_sampled_buckets
=
self
.
_original_buckets
def
buckets
(
self
):
"""
Get visual buckets instead of original buckets.
"""
if
not
self
.
_re_sampled_buckets
:
self
.
_re_sample_buckets
()
return
self
.
_re_sampled_buckets
mindinsight/datavisual/data_transform/ms_data_loader.py
浏览文件 @
c4c74bd6
...
...
@@ -36,6 +36,7 @@ from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summar
from
mindinsight.datavisual.proto_files
import
mindinsight_anf_ir_pb2
as
anf_ir_pb2
from
mindinsight.datavisual.utils
import
crc32
from
mindinsight.utils.exceptions
import
UnknownError
from
mindinsight.datavisual.data_transform.histogram_container
import
HistogramContainer
HEADER_SIZE
=
8
CRC_STR_SIZE
=
4
...
...
@@ -235,7 +236,7 @@ class MSDataLoader:
self
.
_events_data
.
add_tensor_event
(
tensor_event
)
if
value
.
HasField
(
'histogram'
):
histogram_msg
=
value
.
histogram
histogram_msg
=
HistogramContainer
(
value
.
histogram
)
tag
=
'{}/{}'
.
format
(
value
.
tag
,
PluginNameEnum
.
HISTOGRAM
.
value
)
tensor_event
=
TensorEvent
(
wall_time
=
event
.
wall_time
,
step
=
event
.
step
,
...
...
mindinsight/datavisual/data_transform/reservoir.py
浏览文件 @
c4c74bd6
...
...
@@ -16,7 +16,9 @@
import
random
import
threading
import
math
from
mindinsight.datavisual.common.enums
import
PluginNameEnum
from
mindinsight.utils.exceptions
import
ParamValueError
...
...
@@ -106,3 +108,118 @@ class Reservoir:
round
(
self
.
_sample_counter
*
sample_remaining_rate
))
return
remove_size
class
_VisualRange
:
"""Simple helper class to merge visual ranges."""
def
__init__
(
self
):
self
.
_max
=
0.0
self
.
_min
=
0.0
self
.
_updated
=
False
def
update
(
self
,
max_val
:
float
,
min_val
:
float
)
->
None
:
"""
Merge visual range with given range.
Args:
max_val (float): Max value of given range.
min_val (float): Min value of given range.
"""
if
not
self
.
_updated
:
self
.
_max
=
max_val
self
.
_min
=
min_val
self
.
_updated
=
True
return
if
max_val
>
self
.
_max
:
self
.
_max
=
max_val
if
min_val
<
self
.
_min
:
self
.
_min
=
min_val
@
property
def
max
(
self
):
"""Gets max value of current range."""
return
self
.
_max
@
property
def
min
(
self
):
"""Gets min value of current range."""
return
self
.
_min
class
HistogramReservoir
(
Reservoir
):
"""
Reservoir for histogram, which needs updating range over all steps.
Args:
size (int): Container Size. If the size is 0, the container is not limited.
"""
def
__init__
(
self
,
size
):
super
().
__init__
(
size
)
def
samples
(
self
):
"""Return all stored samples."""
with
self
.
_mutex
:
# calc visual range
visual_range
=
_VisualRange
()
max_count
=
0
for
sample
in
self
.
_samples
:
histogram
=
sample
.
value
if
histogram
.
count
==
0
:
# ignore empty tensor
continue
max_count
=
max
(
histogram
.
count
,
max_count
)
visual_range
.
update
(
histogram
.
max
,
histogram
.
min
)
bins
=
self
.
_calc_bins
(
max_count
)
# update visual range
for
sample
in
self
.
_samples
:
histogram
=
sample
.
value
histogram
.
set_visual_range
(
visual_range
.
max
,
visual_range
.
min
,
bins
)
return
list
(
self
.
_samples
)
def
_calc_bins
(
self
,
count
):
"""
Calculates experience-based optimal bins number.
To suppress re-sample bias, there should be enough number in each bin. So we calc bin numbers according to
count. For very small count(1 - 10), we assign carefully chosen number. For large count, we tried to make
sure there are 9-10 numbers in each bucket on average. Too many bins will also distract users, so we set max
number of bins to 30.
"""
number_per_bucket
=
10
max_bins
=
30
if
not
count
:
return
1
if
count
<=
5
:
return
2
if
count
<=
10
:
return
3
if
count
<=
280
:
# note that math.ceil(281/10) + 1 = 30
return
math
.
ceil
(
count
/
number_per_bucket
)
+
1
return
max_bins
class
ReservoirFactory
:
"""Factory class to get reservoir instances."""
def
create_reservoir
(
self
,
plugin_name
:
str
,
size
:
int
)
->
Reservoir
:
"""
Creates reservoir for given plugin name.
Args:
plugin_name (str): Plugin name
size (int): Container Size. If the size is 0, the container is not limited.
Returns:
Reservoir, reservoir instance for given plugin name.
"""
if
plugin_name
==
PluginNameEnum
.
HISTOGRAM
.
value
:
return
HistogramReservoir
(
size
)
return
Reservoir
(
size
)
mindinsight/datavisual/processors/histogram_processor.py
浏览文件 @
c4c74bd6
...
...
@@ -53,9 +53,8 @@ class HistogramProcessor(BaseProcessor):
histograms
=
[]
for
tensor
in
tensors
:
buckets
=
[]
for
bucket
in
tensor
.
value
.
buckets
:
buckets
.
append
([
bucket
.
left
,
bucket
.
width
,
bucket
.
count
])
histogram
=
tensor
.
value
buckets
=
histogram
.
buckets
()
histograms
.
append
({
"wall_time"
:
tensor
.
wall_time
,
"step"
:
tensor
.
step
,
...
...
tests/ut/datavisual/data_transform/test_histogram_container.py
0 → 100644
浏览文件 @
c4c74bd6
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test histogram."""
import
unittest.mock
as
mock
from
mindinsight.datavisual.data_transform
import
histogram_container
as
hist
class
TestHistogram
:
"""Test histogram."""
def
test_get_buckets
(
self
):
"""Test get buckets."""
mocked_input
=
mock
.
MagicMock
()
mocked_bucket
=
mock
.
MagicMock
()
mocked_bucket
.
left
=
0
mocked_bucket
.
width
=
1
mocked_bucket
.
count
=
1
mocked_input
.
buckets
=
[
mocked_bucket
]
histogram
=
hist
.
HistogramContainer
(
mocked_input
)
histogram
.
set_visual_range
(
max_val
=
1
,
min_val
=
0
,
bins
=
1
)
buckets
=
histogram
.
buckets
()
assert
len
(
buckets
)
==
1
\ No newline at end of file
tests/ut/datavisual/data_transform/test_reservoir.py
0 → 100644
浏览文件 @
c4c74bd6
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test reservoir."""
import
unittest.mock
as
mock
import
mindinsight.datavisual.data_transform.reservoir
as
reservoir
class
TestHistogramReservoir
:
"""Test histogram reservoir."""
def
test_samples
(
self
):
"""Test get samples."""
my_reservoir
=
reservoir
.
ReservoirFactory
().
create_reservoir
(
reservoir
.
PluginNameEnum
.
HISTOGRAM
.
value
,
size
=
10
)
sample1
=
mock
.
MagicMock
()
sample1
.
value
.
count
=
1
sample1
.
value
.
max
=
102
sample1
.
value
.
min
=
101
sample2
=
mock
.
MagicMock
()
sample2
.
value
.
count
=
2
sample2
.
value
.
max
=
102
sample2
.
value
.
min
=
101
my_reservoir
.
add_sample
(
sample1
)
my_reservoir
.
add_sample
(
sample2
)
samples
=
my_reservoir
.
samples
()
assert
len
(
samples
)
==
2
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录