Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindinsight
提交
886d57f2
M
mindinsight
项目概览
MindSpore
/
mindinsight
通知
8
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindinsight
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
886d57f2
编写于
8月 21, 2020
作者:
M
moran
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ST & Optimize template
上级
05816bdf
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
627 addition
and
82 deletion
+627
-82
mindinsight/wizard/conf/templates/network/alexnet/README.md-tpl
...sight/wizard/conf/templates/network/alexnet/README.md-tpl
+1
-1
mindinsight/wizard/conf/templates/network/alexnet/src/config.py-tpl
...t/wizard/conf/templates/network/alexnet/src/config.py-tpl
+1
-1
mindinsight/wizard/conf/templates/network/alexnet/train.py-tpl
...nsight/wizard/conf/templates/network/alexnet/train.py-tpl
+2
-1
mindinsight/wizard/conf/templates/network/lenet/src/config.py-tpl
...ght/wizard/conf/templates/network/lenet/src/config.py-tpl
+2
-2
mindinsight/wizard/conf/templates/network/lenet/train.py-tpl
mindinsight/wizard/conf/templates/network/lenet/train.py-tpl
+2
-1
mindinsight/wizard/conf/templates/network/resnet50/README.md-tpl
...ight/wizard/conf/templates/network/resnet50/README.md-tpl
+1
-2
mindinsight/wizard/conf/templates/network/resnet50/eval.py-tpl
...nsight/wizard/conf/templates/network/resnet50/eval.py-tpl
+2
-2
mindinsight/wizard/conf/templates/network/resnet50/src/config.py-tpl
.../wizard/conf/templates/network/resnet50/src/config.py-tpl
+23
-24
mindinsight/wizard/conf/templates/network/resnet50/src/crossentropy.py-tpl
...d/conf/templates/network/resnet50/src/crossentropy.py-tpl
+0
-39
mindinsight/wizard/conf/templates/network/resnet50/train.py-tpl
...sight/wizard/conf/templates/network/resnet50/train.py-tpl
+7
-9
tests/st/func/wizard/test_alexnet.py
tests/st/func/wizard/test_alexnet.py
+208
-0
tests/st/func/wizard/test_lenet.py
tests/st/func/wizard/test_lenet.py
+165
-0
tests/st/func/wizard/test_resnet50.py
tests/st/func/wizard/test_resnet50.py
+213
-0
未找到文件。
mindinsight/wizard/conf/templates/network/alexnet/README.md-tpl
浏览文件 @
886d57f2
...
...
@@ -11,7 +11,7 @@ These are examples of training AlexNet with dataset in MindSpore.
- Download the dataset, the directory structure is as follows:
{% if dataset=='Cifar10' %}
C
IFAR-
10
C
ifar
10
```
└─Data
...
...
mindinsight/wizard/conf/templates/network/alexnet/src/config.py-tpl
浏览文件 @
886d57f2
...
...
@@ -28,7 +28,7 @@ cfg = edict({
'lr': 0.002,
"momentum": 0.9,
{% elif optimizer=='SGD' %}
'lr': 0.1,
'lr': 0.
0
1,
{% else %}
'lr': 0.001,
{% endif %}
...
...
mindinsight/wizard/conf/templates/network/alexnet/train.py-tpl
浏览文件 @
886d57f2
...
...
@@ -27,7 +27,8 @@ from src.alexnet import AlexNet
import
mindspore
.
nn
as
nn
from
mindspore
import
context
from
mindspore
import
Tensor
from
mindspore
.
train
import
Model
,
ParallelMode
from
mindspore
.
train
import
Model
from
mindspore
.
context
import
ParallelMode
from
mindspore
.
nn
.
metrics
import
Accuracy
from
mindspore
.
train
.
callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
from
mindspore
.
train
.
loss_scale_manager
import
FixedLossScaleManager
...
...
mindinsight/wizard/conf/templates/network/lenet/src/config.py-tpl
浏览文件 @
886d57f2
...
...
@@ -21,9 +21,9 @@ cfg = edict({
'num_classes': 10,
{% if optimizer=='Momentum' %}
'lr': 0.01,
"momentum"
: 0.9,
'momentum'
: 0.9,
{% elif optimizer=='SGD' %}
'lr': 0.1,
'lr': 0.
0
1,
{% else %}
'lr': 0.001,
{% endif %}
...
...
mindinsight/wizard/conf/templates/network/lenet/train.py-tpl
浏览文件 @
886d57f2
...
...
@@ -21,10 +21,11 @@ import os
import
argparse
import
mindspore
.
nn
as
nn
from
mindspore
import
context
,
ParallelMode
from
mindspore
import
context
from
mindspore
.
communication
.
management
import
init
,
get_rank
from
mindspore
.
train
.
callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
from
mindspore
.
train
import
Model
from
mindspore
.
context
import
ParallelMode
from
mindspore
.
train
.
serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore
.
nn
.
metrics
import
Accuracy
...
...
mindinsight/wizard/conf/templates/network/resnet50/README.md-tpl
浏览文件 @
886d57f2
...
...
@@ -11,7 +11,7 @@ These are examples of training ResNet50 with dataset in MindSpore.
- Download the dataset, the directory structure is as follows:
{% if dataset=='Cifar10' %}
C
IFAR-
10
C
ifar
10
```
└─Data
...
...
@@ -50,7 +50,6 @@ ImageNet
└── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs)
├── src
├── config.py # parameter configuration
├── crossentropy.py # loss definition for ImageNet2012 dataset
├── dataset.py # data preprocessing
├── lr_generator.py # generate learning rate for each step
└── resnet50.py # resNet50 network definition
...
...
mindinsight/wizard/conf/templates/network/resnet50/eval.py-tpl
浏览文件 @
886d57f2
...
...
@@ -37,7 +37,7 @@ np.random.seed(1)
de
.
config
.
set_seed
(
1
)
from
src
.
resnet50
import
resnet50
as
resnet
from
src
.
resnet50
import
resnet50
from
src
.
config
import
cfg
...
...
@@ -57,7 +57,7 @@ if __name__ == '__main__':
step_size
=
dataset
.
get_dataset_size
()
#
define
net
net
=
resnet
(
class_num
=
cfg
.
num_classes
)
net
=
resnet
50
(
class_num
=
cfg
.
num_classes
)
#
load
checkpoint
param_dict
=
load_checkpoint
(
args_opt
.
checkpoint_path
)
...
...
mindinsight/wizard/conf/templates/network/resnet50/src/config.py-tpl
浏览文件 @
886d57f2
...
...
@@ -23,36 +23,35 @@ cfg = ed({
{% elif dataset=='ImageNet' %}
'num_classes': 1001,
{% endif %}
"batch_size"
: 32,
"loss_scale"
: 1024,
'batch_size'
: 32,
'loss_scale'
: 1024,
{% if optimizer=='Momentum' %}
"lr": 0.01,
"momentum": 0.9,
"lr": 0.01,
'lr': 0.01,
'momentum': 0.9,
{% elif optimizer=='SGD' %}
'lr': 0.1,
'lr': 0.
0
1,
{% else %}
'lr': 0.001,
{% endif %}
"image_height"
: 224,
"image_width"
: 224,
"weight_decay"
: 1e-4,
"epoch_size"
: 1,
"pretrain_epoch_size"
: 1,
"save_checkpoint"
: True,
"save_checkpoint_epochs"
: 5,
"keep_checkpoint_max"
: 10,
"save_checkpoint_path": "./"
,
'image_height'
: 224,
'image_width'
: 224,
'weight_decay'
: 1e-4,
'epoch_size'
: 1,
'pretrain_epoch_size'
: 1,
'save_checkpoint'
: True,
'save_checkpoint_epochs'
: 5,
'keep_checkpoint_max'
: 10,
'save_checkpoint_path': './'
,
{% if dataset=='ImageNet' %}
"warmup_epochs"
: 0,
"lr_decay_mode": "cosine"
,
'warmup_epochs'
: 0,
'lr_decay_mode': 'cosine'
,
{% elif dataset=='Cifar10' %}
"warmup_epochs"
: 5,
"lr_decay_mode": "poly"
,
'warmup_epochs'
: 5,
'lr_decay_mode': 'poly'
,
{% endif %}
"use_label_smooth"
: True,
"label_smooth_factor"
: 0.1,
"lr_init"
: 0.01,
"lr_end"
: 0.00001,
"lr_max"
: 0.1
'use_label_smooth'
: True,
'label_smooth_factor'
: 0.1,
'lr_init'
: 0.01,
'lr_end'
: 0.00001,
'lr_max'
: 0.1
})
mindinsight/wizard/conf/templates/network/resnet50/src/crossentropy.py-tpl
已删除
100644 → 0
浏览文件 @
05816bdf
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""define loss function for network"""
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore import Tensor
from mindspore.common import dtype as mstype
import mindspore.nn as nn
class CrossEntropy(_Loss):
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
def __init__(self, smooth_factor=0., num_classes=1001):
super(CrossEntropy, self).__init__()
self.onehot = P.OneHot()
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean(False)
def construct(self, logit, label):
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
loss = self.ce(logit, one_hot_label)
loss = self.mean(loss, 0)
return loss
mindinsight/wizard/conf/templates/network/resnet50/train.py-tpl
浏览文件 @
886d57f2
...
...
@@ -21,7 +21,8 @@ from mindspore import context
from
mindspore
import
Tensor
from
mindspore
import
dataset
as
de
from
mindspore
.
parallel
.
_auto_parallel_context
import
auto_parallel_context
from
mindspore
.
train
.
model
import
Model
,
ParallelMode
from
mindspore
.
train
.
model
import
Model
from
mindspore
.
context
import
ParallelMode
from
mindspore
.
train
.
callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
from
mindspore
.
train
.
loss_scale_manager
import
FixedLossScaleManager
from
mindspore
.
train
.
serialization
import
load_checkpoint
,
load_param_into_net
...
...
@@ -46,7 +47,7 @@ np.random.seed(1)
de
.
config
.
set_seed
(
1
)
from
src
.
resnet50
import
resnet50
as
resnet
from
src
.
resnet50
import
resnet50
from
src
.
config
import
cfg
from
src
.
dataset
import
create_dataset
...
...
@@ -80,7 +81,7 @@ if __name__ == '__main__':
step_size
=
dataset
.
get_dataset_size
()
#
define
net
net
=
resnet
(
class_num
=
cfg
.
num_classes
)
net
=
resnet
50
(
class_num
=
cfg
.
num_classes
)
#
init
weight
if
args_opt
.
pre_trained
:
...
...
@@ -156,13 +157,10 @@ if __name__ == '__main__':
{%
elif
loss
==
'SoftmaxCrossEntropyExpand'
%}
loss
=
nn
.
SoftmaxCrossEntropyExpand
(
sparse
=
True
)
{%
endif
%}
{%
if
optimizer
==
'Momentum'
%}
opt
=
nn
.
Momentum
(
filter
(
lambda
x
:
x
.
requires_grad
,
net
.
get_parameters
()),
learning_rate
=
lr
,
momentum
=
cfg
.
momentum
)
{%
else
%}
opt
=
nn
.{{
optimizer
}}(
filter
(
lambda
x
:
x
.
requires_grad
,
net
.
get_parameters
()),
learning_rate
=
lr
)
{%
endif
%}
{%
endif
%}
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
metrics
={
'acc'
})
loss_scale
=
FixedLossScaleManager
(
cfg
.
loss_scale
,
drop_overflow_update
=
False
)
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
loss_scale_manager
=
loss_scale
,
metrics
={
'acc'
},
amp_level
=
"O2"
,
keep_batchnorm_fp32
=
True
)
#
define
callbacks
time_cb
=
TimeMonitor
(
data_size
=
step_size
)
...
...
tests/st/func/wizard/test_alexnet.py
0 → 100644
浏览文件 @
886d57f2
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Function:
Test the various combinations based on AlexNet.
"""
import
os
import
pytest
from
mindinsight.wizard.base.utility
import
load_network_maker
NETWORK_NAME
=
'alexnet'
class
TestAlexNet
:
"""Test AlexNet Module"""
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
env_single
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
parametrize
(
'params'
,
[{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
}])
def
test_combinations
(
self
,
params
):
"""Do testing"""
network_maker_name
=
NETWORK_NAME
config
=
params
[
'config'
]
dataset_loader_name
=
params
[
'dataset_loader_name'
]
network_maker
=
load_network_maker
(
network_maker_name
)
network_maker
.
configure
(
config
)
self
.
source_files
=
network_maker
.
generate
(
**
config
)
self
.
check_scripts
()
self
.
check_src
(
dataset_loader_name
,
config
)
self
.
check_train_eval_readme
(
config
[
'dataset'
],
config
[
'loss'
],
config
[
'optimizer'
])
def
check_src
(
self
,
dataset_name
,
config
):
"""Check src file"""
dataset_is_right
=
False
config_dataset_is_right
=
False
config_optimizer_is_right
=
False
network_is_right
=
False
generator_lr_is_right
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'src/dataset.py'
:
if
dataset_name
in
source_file
.
content
:
dataset_is_right
=
True
if
source_file
.
file_relative_path
==
os
.
path
.
join
(
'src'
,
NETWORK_NAME
.
lower
()
+
'.py'
):
network_is_right
=
True
if
source_file
.
file_relative_path
==
'src/generator_lr.py'
:
generator_lr_is_right
=
True
if
source_file
.
file_relative_path
==
'src/config.py'
:
content
=
source_file
.
content
if
config
[
'dataset'
]
==
'Cifar10'
:
if
"'num_classes': 10"
in
content
:
config_dataset_is_right
=
True
elif
config
[
'dataset'
]
==
'ImageNet'
:
if
"'num_classes': 1001"
in
content
:
config_dataset_is_right
=
True
if
config
[
'optimizer'
]
==
'Momentum'
:
if
"'lr': 0.002"
in
content
:
config_optimizer_is_right
=
True
elif
config
[
'optimizer'
]
==
'SGD'
:
if
"'lr': 0.01"
in
content
:
config_optimizer_is_right
=
True
else
:
if
"'lr': 0.001"
in
content
:
config_optimizer_is_right
=
True
assert
dataset_is_right
assert
config_dataset_is_right
assert
config_optimizer_is_right
assert
network_is_right
assert
generator_lr_is_right
def
check_train_eval_readme
(
self
,
dataset_name
,
loss_name
,
optimizer_name
):
"""Check train and eval"""
train_is_right
=
False
eval_is_right
=
False
readme_is_right
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'train.py'
:
content
=
source_file
.
content
if
'alexnet'
in
content
and
loss_name
in
content
and
optimizer_name
in
content
:
train_is_right
=
True
if
source_file
.
file_relative_path
==
'eval.py'
:
content
=
source_file
.
content
if
'alexnet'
in
content
and
loss_name
in
content
:
eval_is_right
=
True
if
source_file
.
file_relative_path
==
'README.md'
:
content
=
source_file
.
content
if
'AlexNet'
in
content
and
dataset_name
in
content
:
readme_is_right
=
True
assert
train_is_right
assert
eval_is_right
assert
readme_is_right
def
check_scripts
(
self
):
"""Check scripts"""
exist_run_distribute_train
=
False
exist_run_distribute_train_gpu
=
False
exist_run_eval
=
False
exist_run_eval_gpu
=
False
exist_run_standalone_train
=
False
exist_run_standalone_train_gpu
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'scripts/run_distribute_train.sh'
:
exist_run_distribute_train
=
True
if
source_file
.
file_relative_path
==
'scripts/run_distribute_train_gpu.sh'
:
exist_run_distribute_train_gpu
=
True
if
source_file
.
file_relative_path
==
'scripts/run_eval.sh'
:
exist_run_eval
=
True
if
source_file
.
file_relative_path
==
'scripts/run_eval_gpu.sh'
:
exist_run_eval_gpu
=
True
if
source_file
.
file_relative_path
==
'scripts/run_standalone_train.sh'
:
exist_run_standalone_train
=
True
if
source_file
.
file_relative_path
==
'scripts/run_standalone_train_gpu.sh'
:
exist_run_standalone_train_gpu
=
True
assert
exist_run_distribute_train
assert
exist_run_distribute_train_gpu
assert
exist_run_eval
assert
exist_run_eval_gpu
assert
exist_run_standalone_train
assert
exist_run_standalone_train_gpu
tests/st/func/wizard/test_lenet.py
0 → 100644
浏览文件 @
886d57f2
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Function:
Test the various combinations based on LeNet.
"""
import
os
import
pytest
from
mindinsight.wizard.base.utility
import
load_network_maker
NETWORK_NAME
=
'lenet'
class
TestLeNet
:
"""Test LeNet Module"""
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
env_single
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
parametrize
(
'params'
,
[{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'MNIST'
},
'dataset_loader_name'
:
'MnistDataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'MNIST'
},
'dataset_loader_name'
:
'MnistDataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'MNIST'
},
'dataset_loader_name'
:
'MnistDataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'MNIST'
},
'dataset_loader_name'
:
'MnistDataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'MNIST'
},
'dataset_loader_name'
:
'MnistDataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'MNIST'
},
'dataset_loader_name'
:
'MnistDataset'
}])
def
test_combinations
(
self
,
params
):
"""Do testing"""
network_maker_name
=
NETWORK_NAME
config
=
params
[
'config'
]
dataset_loader_name
=
params
[
'dataset_loader_name'
]
network_maker
=
load_network_maker
(
network_maker_name
)
network_maker
.
configure
(
config
)
self
.
source_files
=
network_maker
.
generate
(
**
config
)
self
.
check_scripts
()
self
.
check_src
(
dataset_loader_name
,
config
)
self
.
check_train_eval_readme
(
config
[
'loss'
],
config
[
'optimizer'
])
def
check_src
(
self
,
dataset_name
,
config
):
"""Check src file"""
dataset_is_right
=
False
config_optimizer_is_right
=
False
network_is_right
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'src/dataset.py'
:
if
dataset_name
in
source_file
.
content
:
dataset_is_right
=
True
if
source_file
.
file_relative_path
==
os
.
path
.
join
(
'src'
,
NETWORK_NAME
.
lower
()
+
'.py'
):
network_is_right
=
True
if
source_file
.
file_relative_path
==
'src/config.py'
:
content
=
source_file
.
content
if
config
[
'optimizer'
]
==
'Momentum'
:
if
"'lr': 0.01"
in
content
and
\
"'momentum': 0.9"
in
content
:
config_optimizer_is_right
=
True
elif
config
[
'optimizer'
]
==
'SGD'
:
if
"'lr': 0.01"
in
content
:
config_optimizer_is_right
=
True
else
:
if
"'lr': 0.001"
in
content
:
config_optimizer_is_right
=
True
assert
dataset_is_right
assert
config_optimizer_is_right
assert
network_is_right
def
check_train_eval_readme
(
self
,
loss_name
,
optimizer_name
):
"""Check train and eval"""
train_is_right
=
False
eval_is_right
=
False
readme_is_right
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'train.py'
:
content
=
source_file
.
content
if
'LeNet5'
in
content
and
loss_name
in
content
and
optimizer_name
in
content
:
train_is_right
=
True
if
source_file
.
file_relative_path
==
'eval.py'
:
content
=
source_file
.
content
if
'LeNet5'
in
content
and
loss_name
in
content
:
eval_is_right
=
True
if
source_file
.
file_relative_path
==
'README.md'
:
content
=
source_file
.
content
if
'LeNet'
in
content
:
readme_is_right
=
True
assert
train_is_right
assert
eval_is_right
assert
readme_is_right
def
check_scripts
(
self
):
"""Check scripts"""
exist_run_distribute_train
=
False
exist_run_distribute_train_gpu
=
False
exist_run_eval
=
False
exist_run_eval_gpu
=
False
exist_run_standalone_train
=
False
exist_run_standalone_train_gpu
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'scripts/run_distribute_train.sh'
:
exist_run_distribute_train
=
True
if
source_file
.
file_relative_path
==
'scripts/run_distribute_train_gpu.sh'
:
exist_run_distribute_train_gpu
=
True
if
source_file
.
file_relative_path
==
'scripts/run_eval.sh'
:
exist_run_eval
=
True
if
source_file
.
file_relative_path
==
'scripts/run_eval_gpu.sh'
:
exist_run_eval_gpu
=
True
if
source_file
.
file_relative_path
==
'scripts/run_standalone_train.sh'
:
exist_run_standalone_train
=
True
if
source_file
.
file_relative_path
==
'scripts/run_standalone_train_gpu.sh'
:
exist_run_standalone_train_gpu
=
True
assert
exist_run_distribute_train
assert
exist_run_distribute_train_gpu
assert
exist_run_eval
assert
exist_run_eval_gpu
assert
exist_run_standalone_train
assert
exist_run_standalone_train_gpu
tests/st/func/wizard/test_resnet50.py
0 → 100644
浏览文件 @
886d57f2
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Function:
Test the various combinations based on ResNet50.
"""
import
os
import
pytest
from
mindinsight.wizard.base.utility
import
load_network_maker
NETWORK_NAME
=
'resnet50'
class
TestResNet50
:
"""Test ResNet50 Module"""
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
env_single
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
parametrize
(
'params'
,
[{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'Cifar10'
},
'dataset_loader_name'
:
'Cifar10Dataset'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyWithLogits'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Momentum'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'Adam'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
},
{
'config'
:
{
'loss'
:
'SoftmaxCrossEntropyExpand'
,
'optimizer'
:
'SGD'
,
'dataset'
:
'ImageNet'
},
'dataset_loader_name'
:
'ImageFolderDatasetV2'
}])
def
test_combinations
(
self
,
params
):
"""Do testing"""
network_maker_name
=
NETWORK_NAME
config
=
params
[
'config'
]
dataset_loader_name
=
params
[
'dataset_loader_name'
]
network_maker
=
load_network_maker
(
network_maker_name
)
network_maker
.
configure
(
config
)
self
.
source_files
=
network_maker
.
generate
(
**
config
)
self
.
check_scripts
()
self
.
check_src
(
dataset_loader_name
,
config
)
self
.
check_train_eval_readme
(
config
[
'dataset'
],
config
[
'loss'
],
config
[
'optimizer'
])
def
check_src
(
self
,
dataset_name
,
config
):
"""Check src file"""
dataset_is_right
=
False
config_dataset_is_right
=
False
config_optimizer_is_right
=
False
network_is_right
=
False
generator_lr_is_right
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'src/dataset.py'
:
if
dataset_name
in
source_file
.
content
:
dataset_is_right
=
True
if
source_file
.
file_relative_path
==
os
.
path
.
join
(
'src'
,
NETWORK_NAME
.
lower
()
+
'.py'
):
network_is_right
=
True
if
source_file
.
file_relative_path
==
'src/lr_generator.py'
:
generator_lr_is_right
=
True
if
source_file
.
file_relative_path
==
'src/config.py'
:
content
=
source_file
.
content
if
config
[
'dataset'
]
==
'Cifar10'
:
if
"'num_classes': 10"
in
content
\
and
"'warmup_epochs': 5"
in
content
\
and
"'lr_decay_mode': 'poly'"
in
content
:
config_dataset_is_right
=
True
elif
config
[
'dataset'
]
==
'ImageNet'
:
if
"'num_classes': 1001"
in
content
\
and
"'warmup_epochs': 0"
in
content
\
and
"'lr_decay_mode': 'cosine'"
:
config_dataset_is_right
=
True
if
config
[
'optimizer'
]
==
'Momentum'
:
if
"'lr': 0.01"
in
content
and
\
"'momentum': 0.9"
in
content
:
config_optimizer_is_right
=
True
elif
config
[
'optimizer'
]
==
'SGD'
:
if
"'lr': 0.01"
in
content
:
config_optimizer_is_right
=
True
else
:
if
"'lr': 0.001"
in
content
:
config_optimizer_is_right
=
True
assert
dataset_is_right
assert
config_dataset_is_right
assert
config_optimizer_is_right
assert
network_is_right
assert
generator_lr_is_right
def
check_train_eval_readme
(
self
,
dataset_name
,
loss_name
,
optimizer_name
):
"""Check train and eval"""
train_is_right
=
False
eval_is_right
=
False
readme_is_right
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'train.py'
:
content
=
source_file
.
content
if
'resnet50'
in
content
and
loss_name
in
content
and
optimizer_name
in
content
:
train_is_right
=
True
if
source_file
.
file_relative_path
==
'eval.py'
:
content
=
source_file
.
content
if
'resnet50'
in
content
and
loss_name
in
content
:
eval_is_right
=
True
if
source_file
.
file_relative_path
==
'README.md'
:
content
=
source_file
.
content
if
'ResNet50'
in
content
and
dataset_name
in
content
:
readme_is_right
=
True
assert
train_is_right
assert
eval_is_right
assert
readme_is_right
def
check_scripts
(
self
):
"""Check scripts"""
exist_run_distribute_train
=
False
exist_run_distribute_train_gpu
=
False
exist_run_eval
=
False
exist_run_eval_gpu
=
False
exist_run_standalone_train
=
False
exist_run_standalone_train_gpu
=
False
for
source_file
in
self
.
source_files
:
if
source_file
.
file_relative_path
==
'scripts/run_distribute_train.sh'
:
exist_run_distribute_train
=
True
if
source_file
.
file_relative_path
==
'scripts/run_distribute_train_gpu.sh'
:
exist_run_distribute_train_gpu
=
True
if
source_file
.
file_relative_path
==
'scripts/run_eval.sh'
:
exist_run_eval
=
True
if
source_file
.
file_relative_path
==
'scripts/run_eval_gpu.sh'
:
exist_run_eval_gpu
=
True
if
source_file
.
file_relative_path
==
'scripts/run_standalone_train.sh'
:
exist_run_standalone_train
=
True
if
source_file
.
file_relative_path
==
'scripts/run_standalone_train_gpu.sh'
:
exist_run_standalone_train_gpu
=
True
assert
exist_run_distribute_train
assert
exist_run_distribute_train_gpu
assert
exist_run_eval
assert
exist_run_eval_gpu
assert
exist_run_standalone_train
assert
exist_run_standalone_train_gpu
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录