Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindinsight
提交
4cf140c9
M
mindinsight
项目概览
MindSpore
/
mindinsight
通知
7
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindinsight
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4cf140c9
编写于
5月 28, 2020
作者:
W
wangyue01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add set context rule in Profiler example
上级
c4fc9bfb
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
14 addition
and
8 deletion
+14
-8
mindinsight/profiler/README.md
mindinsight/profiler/README.md
+10
-8
mindinsight/profiler/profiling.py
mindinsight/profiler/profiling.py
+4
-0
未找到文件。
mindinsight/profiler/README.md
浏览文件 @
4cf140c9
...
...
@@ -12,16 +12,18 @@ The Profiler enables users to:
To enable profiling on MindSpore, the MindInsight Profiler apis should be added to the script:
1.
Import MindInsight Profiler
```
from mindinsight.profiler import Profiler
2.
Initialize the Profiler
before training
```
2.
Initialize the Profiler
after set context, and before the network initialization.
Example:
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=int(os.environ["DEVICE_ID"]))
profiler = Profiler(output_path="./data", is_detail=True, is_show_op_path=False, subgraph='All')
net = Net()
Parameters including:
Parameters
of Profiler
including:
subgraph (str): Defines which subgraph to monitor and analyse, can be 'all', 'Default', 'Gradients'.
is_detail (bool): Whether to show profiling data for op_instance level, only show optype level if False.
...
...
@@ -31,9 +33,9 @@ To enable profiling on MindSpore, the MindInsight Profiler apis should be added
will deal with all op if null.
optypes_not_deal (list): Op type names, the data of which optype will not be collected and analysed.
3.
Call
Profiler.analyse()
at the end of the program
3.
Call
```Profiler.analyse()```
at the end of the program
Profiler.analyse()
will collect profiling data and generate the analysis results.
```Profiler.analyse()```
will collect profiling data and generate the analysis results.
After training, we can open MindInsight UI to analyse the performance.
...
...
mindinsight/profiler/profiling.py
浏览文件 @
4cf140c9
...
...
@@ -50,6 +50,8 @@ class Profiler:
Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target=“Ascend”,
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()
...
...
@@ -107,6 +109,8 @@ class Profiler:
Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target=“Ascend”,
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录