提交 4cf140c9 编写于 作者: W wangyue01

Add set context rule in Profiler example

上级 c4fc9bfb
......@@ -12,16 +12,18 @@ The Profiler enables users to:
To enable profiling on MindSpore, the MindInsight Profiler apis should be added to the script:
1. Import MindInsight Profiler
```
from mindinsight.profiler import Profiler
2. Initialize the Profiler before training
```
2. Initialize the Profiler after set context, and before the network initialization.
Example:
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=int(os.environ["DEVICE_ID"]))
profiler = Profiler(output_path="./data", is_detail=True, is_show_op_path=False, subgraph='All')
net = Net()
Parameters including:
Parameters of Profiler including:
subgraph (str): Defines which subgraph to monitor and analyse, can be 'all', 'Default', 'Gradients'.
is_detail (bool): Whether to show profiling data for op_instance level, only show optype level if False.
......@@ -31,9 +33,9 @@ To enable profiling on MindSpore, the MindInsight Profiler apis should be added
will deal with all op if null.
optypes_not_deal (list): Op type names, the data of which optype will not be collected and analysed.
3. Call Profiler.analyse() at the end of the program
3. Call ```Profiler.analyse()``` at the end of the program
Profiler.analyse() will collect profiling data and generate the analysis results.
```Profiler.analyse()``` will collect profiling data and generate the analysis results.
After training, we can open MindInsight UI to analyse the performance.
......
......@@ -50,6 +50,8 @@ class Profiler:
Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target=“Ascend”,
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()
......@@ -107,6 +109,8 @@ class Profiler:
Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target=“Ascend”,
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册