Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindinsight
提交
4a614930
M
mindinsight
项目概览
MindSpore
/
mindinsight
通知
8
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindinsight
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a614930
编写于
3月 30, 2020
作者:
C
chenchao99
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix ut/st about cmetrics
上级
228a448b
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
472 addition
and
915 deletion
+472
-915
tests/st/func/lineagemgr/api/test_model_api.py
tests/st/func/lineagemgr/api/test_model_api.py
+134
-208
tests/st/func/lineagemgr/conftest.py
tests/st/func/lineagemgr/conftest.py
+3
-46
tests/ut/backend/lineagemgr/test_lineage_api.py
tests/ut/backend/lineagemgr/test_lineage_api.py
+40
-60
tests/ut/lineagemgr/collection/model/test_model_lineage.py
tests/ut/lineagemgr/collection/model/test_model_lineage.py
+20
-40
tests/ut/lineagemgr/common/test_path_parser.py
tests/ut/lineagemgr/common/test_path_parser.py
+35
-58
tests/ut/lineagemgr/common/validator/test_validate.py
tests/ut/lineagemgr/common/validator/test_validate.py
+107
-101
tests/ut/lineagemgr/querier/event_data.py
tests/ut/lineagemgr/querier/event_data.py
+4
-46
tests/ut/lineagemgr/querier/test_querier.py
tests/ut/lineagemgr/querier/test_querier.py
+129
-356
未找到文件。
tests/st/func/lineagemgr/api/test_model_api.py
浏览文件 @
4a614930
...
...
@@ -33,6 +33,96 @@ from mindinsight.lineagemgr.common.exceptions.exceptions import \
from
..conftest
import
BASE_SUMMARY_DIR
,
SUMMARY_DIR
,
SUMMARY_DIR_2
,
DATASET_GRAPH
LINEAGE_INFO_RUN1
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'metric'
:
{
'accuracy'
:
0.78
},
'hyper_parameters'
:
{
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'epoch'
:
14
,
'parallel_mode'
:
'stand_alone'
,
'device_num'
:
2
,
'batch_size'
:
32
},
'algorithm'
:
{
'network'
:
'ResNet'
},
'train_dataset'
:
{
'train_dataset_size'
:
731
},
'valid_dataset'
:
{
'valid_dataset_size'
:
10240
},
'model'
:
{
'path'
:
'{"ckpt": "'
+
BASE_SUMMARY_DIR
+
'/run1/CKPtest_model.ckpt"}'
,
'size'
:
64
},
'dataset_graph'
:
DATASET_GRAPH
}
LINEAGE_FILTRATION_EXCEPT_RUN
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'except_run'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
1024
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
10
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
64
,
'metric'
:
{},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
}
LINEAGE_FILTRATION_RUN1
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
731
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
None
,
'model_size'
:
64
,
'metric'
:
{
'accuracy'
:
0.78
},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
}
LINEAGE_FILTRATION_RUN2
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run2'
),
'loss_function'
:
None
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
None
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
None
,
'optimizer'
:
None
,
'learning_rate'
:
None
,
'epoch'
:
None
,
'batch_size'
:
None
,
'loss'
:
None
,
'model_size'
:
None
,
'metric'
:
{
'accuracy'
:
2.7800000000000002
},
'dataset_graph'
:
{},
'dataset_mark'
:
3
}
@
pytest
.
mark
.
usefixtures
(
"create_summary_dir"
)
class
TestModelApi
(
TestCase
):
"""Test lineage information query interface."""
...
...
@@ -67,36 +157,7 @@ class TestModelApi(TestCase):
total_res
=
get_summary_lineage
(
SUMMARY_DIR
)
partial_res1
=
get_summary_lineage
(
SUMMARY_DIR
,
[
'hyper_parameters'
])
partial_res2
=
get_summary_lineage
(
SUMMARY_DIR
,
[
'metric'
,
'algorithm'
])
expect_total_res
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'metric'
:
{
'accuracy'
:
0.78
},
'hyper_parameters'
:
{
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'epoch'
:
14
,
'parallel_mode'
:
'stand_alone'
,
'device_num'
:
2
,
'batch_size'
:
32
},
'algorithm'
:
{
'network'
:
'ResNet'
},
'train_dataset'
:
{
'train_dataset_size'
:
731
},
'valid_dataset'
:
{
'valid_dataset_size'
:
10240
},
'model'
:
{
'path'
:
'{"ckpt": "'
+
BASE_SUMMARY_DIR
+
'/run1/CKPtest_model.ckpt"}'
,
'size'
:
64
},
'dataset_graph'
:
DATASET_GRAPH
}
expect_total_res
=
LINEAGE_INFO_RUN1
expect_partial_res1
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'hyper_parameters'
:
{
...
...
@@ -139,7 +200,7 @@ class TestModelApi(TestCase):
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_single
def
test_get_summary_lineage_exception
(
self
):
def
test_get_summary_lineage_exception
_1
(
self
):
"""Test the interface of get_summary_lineage with exception."""
# summary path does not exist
self
.
assertRaisesRegex
(
...
...
@@ -183,6 +244,14 @@ class TestModelApi(TestCase):
keys
=
None
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_single
def
test_get_summary_lineage_exception_2
(
self
):
"""Test the interface of get_summary_lineage with exception."""
# keys is invalid
self
.
assertRaisesRegex
(
LineageParamValueError
,
...
...
@@ -250,64 +319,9 @@ class TestModelApi(TestCase):
"""Test the interface of filter_summary_lineage."""
expect_result
=
{
'object'
:
[
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'except_run'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
1024
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
10
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
64
,
'metric'
:
{},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
},
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
731
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
None
,
'model_size'
:
64
,
'metric'
:
{
'accuracy'
:
0.78
},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
},
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run2'
),
'loss_function'
:
None
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
None
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
None
,
'optimizer'
:
None
,
'learning_rate'
:
None
,
'epoch'
:
None
,
'batch_size'
:
None
,
'loss'
:
None
,
'model_size'
:
None
,
'metric'
:
{
'accuracy'
:
2.7800000000000002
},
'dataset_graph'
:
{},
'dataset_mark'
:
3
}
LINEAGE_FILTRATION_EXCEPT_RUN
,
LINEAGE_FILTRATION_RUN1
,
LINEAGE_FILTRATION_RUN2
],
'count'
:
3
}
...
...
@@ -357,46 +371,8 @@ class TestModelApi(TestCase):
}
expect_result
=
{
'object'
:
[
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run2'
),
'loss_function'
:
None
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
None
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
None
,
'optimizer'
:
None
,
'learning_rate'
:
None
,
'epoch'
:
None
,
'batch_size'
:
None
,
'loss'
:
None
,
'model_size'
:
None
,
'metric'
:
{
'accuracy'
:
2.7800000000000002
},
'dataset_graph'
:
{},
'dataset_mark'
:
3
},
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
731
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
None
,
'model_size'
:
64
,
'metric'
:
{
'accuracy'
:
0.78
},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
}
LINEAGE_FILTRATION_RUN2
,
LINEAGE_FILTRATION_RUN1
],
'count'
:
2
}
...
...
@@ -432,46 +408,8 @@ class TestModelApi(TestCase):
}
expect_result
=
{
'object'
:
[
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run2'
),
'loss_function'
:
None
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
None
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
None
,
'optimizer'
:
None
,
'learning_rate'
:
None
,
'epoch'
:
None
,
'batch_size'
:
None
,
'loss'
:
None
,
'model_size'
:
None
,
'metric'
:
{
'accuracy'
:
2.7800000000000002
},
'dataset_graph'
:
{},
'dataset_mark'
:
3
},
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
731
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
None
,
'model_size'
:
64
,
'metric'
:
{
'accuracy'
:
0.78
},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
}
LINEAGE_FILTRATION_RUN2
,
LINEAGE_FILTRATION_RUN1
],
'count'
:
2
}
...
...
@@ -498,44 +436,8 @@ class TestModelApi(TestCase):
}
expect_result
=
{
'object'
:
[
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'except_run'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
1024
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
10
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
64
,
'metric'
:
{},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
},
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
731
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
None
,
'model_size'
:
64
,
'metric'
:
{
'accuracy'
:
0.78
},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
}
LINEAGE_FILTRATION_EXCEPT_RUN
,
LINEAGE_FILTRATION_RUN1
],
'count'
:
2
}
...
...
@@ -674,6 +576,14 @@ class TestModelApi(TestCase):
search_condition
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_single
def
test_filter_summary_lineage_exception_3
(
self
):
"""Test the abnormal execution of the filter_summary_lineage interface."""
# the condition of offset is invalid
search_condition
=
{
'offset'
:
1.0
...
...
@@ -712,6 +622,14 @@ class TestModelApi(TestCase):
search_condition
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_single
def
test_filter_summary_lineage_exception_4
(
self
):
"""Test the abnormal execution of the filter_summary_lineage interface."""
# the sorted_type not supported
search_condition
=
{
'sorted_name'
:
'summary_dir'
,
...
...
@@ -753,6 +671,14 @@ class TestModelApi(TestCase):
search_condition
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_single
def
test_filter_summary_lineage_exception_5
(
self
):
"""Test the abnormal execution of the filter_summary_lineage interface."""
# the summary dir is invalid in search condition
search_condition
=
{
'summary_dir'
:
{
...
...
@@ -811,7 +737,7 @@ class TestModelApi(TestCase):
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_single
def
test_filter_summary_lineage_exception_
3
(
self
):
def
test_filter_summary_lineage_exception_
6
(
self
):
"""Test the abnormal execution of the filter_summary_lineage interface."""
# gt > lt
search_condition1
=
{
...
...
tests/st/func/lineagemgr/conftest.py
浏览文件 @
4a614930
...
...
@@ -22,6 +22,8 @@ import tempfile
import
pytest
from
....utils
import
mindspore
from
....utils.mindspore.dataset.engine.serializer_deserializer
import
\
SERIALIZED_PIPELINE
sys
.
modules
[
'mindspore'
]
=
mindspore
...
...
@@ -32,52 +34,7 @@ SUMMARY_DIR_3 = os.path.join(BASE_SUMMARY_DIR, 'except_run')
COLLECTION_MODULE
=
'TestModelLineage'
API_MODULE
=
'TestModelApi'
DATASET_GRAPH
=
{
'op_type'
:
'BatchDataset'
,
'op_module'
:
'minddata.dataengine.datasets'
,
'num_parallel_workers'
:
None
,
'drop_remainder'
:
True
,
'batch_size'
:
10
,
'children'
:
[
{
'op_type'
:
'MapDataset'
,
'op_module'
:
'minddata.dataengine.datasets'
,
'num_parallel_workers'
:
None
,
'input_columns'
:
[
'label'
],
'output_columns'
:
[
None
],
'operations'
:
[
{
'tensor_op_module'
:
'minddata.transforms.c_transforms'
,
'tensor_op_name'
:
'OneHot'
,
'num_classes'
:
10
}
],
'children'
:
[
{
'op_type'
:
'MnistDataset'
,
'shard_id'
:
None
,
'num_shards'
:
None
,
'op_module'
:
'minddata.dataengine.datasets'
,
'dataset_dir'
:
'/home/anthony/MindData/tests/dataset/data/testMnistData'
,
'num_parallel_workers'
:
None
,
'shuffle'
:
None
,
'num_samples'
:
100
,
'sampler'
:
{
'sampler_module'
:
'minddata.dataengine.samplers'
,
'sampler_name'
:
'RandomSampler'
,
'replacement'
:
True
,
'num_samples'
:
100
},
'children'
:
[]
}
]
}
]
}
DATASET_GRAPH
=
SERIALIZED_PIPELINE
def
get_module_name
(
nodeid
):
"""Get the module name from nodeid."""
...
...
tests/ut/backend/lineagemgr/test_lineage_api.py
浏览文件 @
4a614930
...
...
@@ -24,6 +24,42 @@ from mindinsight.lineagemgr.common.exceptions.exceptions import \
LineageQuerySummaryDataError
LINEAGE_FILTRATION_BASE
=
{
'accuracy'
:
None
,
'mae'
:
None
,
'mse'
:
None
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
64
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'network'
:
'str'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
12
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
128
}
LINEAGE_FILTRATION_RUN1
=
{
'accuracy'
:
0.78
,
'mae'
:
None
,
'mse'
:
None
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
64
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
64
,
'network'
:
'str'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
128
}
class
TestSearchModel
(
TestCase
):
"""Test the restful api of search_model."""
...
...
@@ -42,39 +78,11 @@ class TestSearchModel(TestCase):
'object'
:
[
{
'summary_dir'
:
base_dir
,
'accuracy'
:
None
,
'mae'
:
None
,
'mse'
:
None
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
64
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'network'
:
'str'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
12
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
128
**
LINEAGE_FILTRATION_BASE
},
{
'summary_dir'
:
os
.
path
.
join
(
base_dir
,
'run1'
),
'accuracy'
:
0.78
,
'mae'
:
None
,
'mse'
:
None
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
64
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
64
,
'network'
:
'str'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
128
**
LINEAGE_FILTRATION_RUN1
}
],
'count'
:
2
...
...
@@ -93,39 +101,11 @@ class TestSearchModel(TestCase):
'object'
:
[
{
'summary_dir'
:
'./'
,
'accuracy'
:
None
,
'mae'
:
None
,
'mse'
:
None
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
64
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'network'
:
'str'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
12
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
128
**
LINEAGE_FILTRATION_BASE
},
{
'summary_dir'
:
'./run1'
,
'accuracy'
:
0.78
,
'mae'
:
None
,
'mse'
:
None
,
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
64
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
64
,
'network'
:
'str'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
128
**
LINEAGE_FILTRATION_RUN1
}
],
'count'
:
2
...
...
tests/ut/lineagemgr/collection/model/test_model_lineage.py
浏览文件 @
4a614930
...
...
@@ -62,14 +62,10 @@ class TestModelLineage(TestCase):
self
.
assertTrue
(
f
'Invalid value for raise_exception.'
in
str
(
context
.
exception
))
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.ds'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'LineageSummary.record_dataset_graph'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'validate_summary_record'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'AnalyzeObject.get_optimizer_by_network'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_dataset_graph'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_optimizer_by_network'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_network'
)
def
test_begin
(
self
,
*
args
):
"""Test TrainLineage.begin method."""
...
...
@@ -84,14 +80,10 @@ class TestModelLineage(TestCase):
args
[
4
].
assert_called
()
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.ds'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'LineageSummary.record_dataset_graph'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'validate_summary_record'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'AnalyzeObject.get_optimizer_by_network'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.'
'AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_dataset_graph'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_optimizer_by_network'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_network'
)
def
test_begin_error
(
self
,
*
args
):
"""Test TrainLineage.begin method."""
...
...
@@ -124,15 +116,11 @@ class TestModelLineage(TestCase):
train_lineage
.
begin
(
self
.
my_run_context
(
run_context
))
self
.
assertTrue
(
'The parameter optimizer is invalid.'
in
str
(
context
.
exception
))
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_path'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_network'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_train_run_context'
)
@
mock
.
patch
(
'builtins.float'
)
...
...
@@ -160,15 +148,11 @@ class TestModelLineage(TestCase):
train_lineage
.
end
(
self
.
run_context
)
self
.
assertTrue
(
'Invalid TrainLineage run_context.'
in
str
(
context
.
exception
))
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_path'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_network'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_train_run_context'
)
@
mock
.
patch
(
'builtins.float'
)
...
...
@@ -188,15 +172,11 @@ class TestModelLineage(TestCase):
train_lineage
.
end
(
self
.
my_run_context
(
self
.
run_context
))
self
.
assertTrue
(
'End error in TrainLineage:'
in
str
(
context
.
exception
))
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_path'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_network'
)
@
mock
.
patch
(
'mindinsight.lineagemgr.collection.model.model_lineage.validate_train_run_context'
)
@
mock
.
patch
(
'builtins.float'
)
...
...
tests/ut/lineagemgr/common/test_path_parser.py
浏览文件 @
4a614930
...
...
@@ -20,23 +20,44 @@ from mindinsight.datavisual.data_transform.summary_watcher import SummaryWatcher
from
mindinsight.lineagemgr.common.path_parser
import
SummaryPathParser
MOCK_SUMMARY_DIRS
=
[
{
'relative_path'
:
'./relative_path0'
},
{
'relative_path'
:
'./'
},
{
'relative_path'
:
'./relative_path1'
}
]
MOCK_SUMMARIES
=
[
{
'file_name'
:
'file0'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031970
)
},
{
'file_name'
:
'file0_lineage'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031970
)
},
{
'file_name'
:
'file1'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031971
)
},
{
'file_name'
:
'file1_lineage'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031971
)
}
]
class
TestSummaryPathParser
(
TestCase
):
"""Test the class of SummaryPathParser."""
@
mock
.
patch
.
object
(
SummaryWatcher
,
'list_summary_directories'
)
def
test_get_summary_dirs
(
self
,
*
args
):
"""Test the function of get_summary_dirs."""
args
[
0
].
return_value
=
[
{
'relative_path'
:
'./relative_path0'
},
{
'relative_path'
:
'./'
},
{
'relative_path'
:
'./relative_path1'
}
]
args
[
0
].
return_value
=
MOCK_SUMMARY_DIRS
expected_result
=
[
'/path/to/base/relative_path0'
,
...
...
@@ -54,24 +75,7 @@ class TestSummaryPathParser(TestCase):
@
mock
.
patch
.
object
(
SummaryWatcher
,
'list_summaries'
)
def
test_get_latest_lineage_summary
(
self
,
*
args
):
"""Test the function of get_latest_lineage_summary."""
args
[
0
].
return_value
=
[
{
'file_name'
:
'file0'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031970
)
},
{
'file_name'
:
'file0_lineage'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031970
)
},
{
'file_name'
:
'file1'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031971
)
},
{
'file_name'
:
'file1_lineage'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031971
)
}
]
args
[
0
].
return_value
=
MOCK_SUMMARIES
summary_dir
=
'/path/to/summary_dir'
result
=
SummaryPathParser
.
get_latest_lineage_summary
(
summary_dir
)
self
.
assertEqual
(
'/path/to/summary_dir/file1_lineage'
,
result
)
...
...
@@ -119,35 +123,8 @@ class TestSummaryPathParser(TestCase):
@
mock
.
patch
.
object
(
SummaryWatcher
,
'list_summary_directories'
)
def
test_get_latest_lineage_summaries
(
self
,
*
args
):
"""Test the function of get_latest_lineage_summaries."""
args
[
0
].
return_value
=
[
{
'relative_path'
:
'./relative_path0'
},
{
'relative_path'
:
'./'
},
{
'relative_path'
:
'./relative_path1'
}
]
args
[
1
].
return_value
=
[
{
'file_name'
:
'file0'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031970
)
},
{
'file_name'
:
'file0_lineage'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031970
)
},
{
'file_name'
:
'file1'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031971
)
},
{
'file_name'
:
'file1_lineage'
,
'create_time'
:
datetime
.
fromtimestamp
(
1582031971
)
}
]
args
[
0
].
return_value
=
MOCK_SUMMARY_DIRS
args
[
1
].
return_value
=
MOCK_SUMMARIES
expected_result
=
[
'/path/to/base/relative_path0/file1_lineage'
,
...
...
tests/ut/lineagemgr/common/validator/test_validate.py
浏览文件 @
4a614930
...
...
@@ -26,27 +26,23 @@ from mindinsight.utils.exceptions import MindInsightException
class
TestValidateSearchModelCondition
(
TestCase
):
"""Test the mothod of validate_search_model_condition."""
def
test_validate_search_model_condition
(
self
):
"""Test the mothod of validate_search_model_condition."""
def
test_validate_search_model_condition
_param_type_error
(
self
):
"""Test the mothod of validate_search_model_condition
with LineageParamTypeError
."""
condition
=
{
'summary_dir'
:
'xxx'
}
self
.
assertRaisesRegex
(
LineageParamTypeError
,
self
.
_assert_raise_of_lineage_param_type_error
(
'The search_condition element summary_dir should be dict.'
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
def
test_validate_search_model_condition_param_value_error
(
self
):
"""Test the mothod of validate_search_model_condition with LineageParamValueError."""
condition
=
{
'xxx'
:
'xxx'
}
self
.
assertRaisesRegex
(
LineageParamValueError
,
self
.
_assert_raise_of_lineage_param_value_error
(
'The search attribute not supported.'
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
...
...
@@ -55,22 +51,38 @@ class TestValidateSearchModelCondition(TestCase):
'xxx'
:
'xxx'
}
}
self
.
assertRaisesRegex
(
LineageParamValueError
,
self
.
_assert_raise_of_lineage_param_value_error
(
"The compare condition should be in"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
condition
=
{
1
:
{
"ge"
:
8.0
}
}
self
.
_assert_raise_of_lineage_param_value_error
(
"The search attribute not supported."
,
condition
)
condition
=
{
'metric_'
:
{
"ge"
:
8.0
}
}
self
.
_assert_raise_of_lineage_param_value_error
(
"The search attribute not supported."
,
condition
)
def
test_validate_search_model_condition_mindinsight_exception_1
(
self
):
"""Test the mothod of validate_search_model_condition with MindinsightException."""
condition
=
{
"offset"
:
100001
}
self
.
assertRaisesRegex
(
MindInsightException
,
self
.
_assert_raise_of_mindinsight_exception
(
"Invalid input offset. 0 <= offset <= 100000"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
...
...
@@ -80,11 +92,9 @@ class TestValidateSearchModelCondition(TestCase):
},
'limit'
:
10
}
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter summary_dir is invalid. It should be a dict and the value should be a string"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter summary_dir is invalid. It should be a dict and "
"the value should be a string"
,
condition
)
...
...
@@ -93,11 +103,9 @@ class TestValidateSearchModelCondition(TestCase):
'in'
:
1.0
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter learning_rate is invalid. It should be a dict and the value should be a float or a integer"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter learning_rate is invalid. It should be a dict and "
"the value should be a float or a integer"
,
condition
)
...
...
@@ -106,24 +114,22 @@ class TestValidateSearchModelCondition(TestCase):
'lt'
:
True
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter learning_rate is invalid. It should be a dict and the value should be a float or a integer"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter learning_rate is invalid. It should be a dict and "
"the value should be a float or a integer"
,
condition
)
def
test_validate_search_model_condition_mindinsight_exception_2
(
self
):
"""Test the mothod of validate_search_model_condition with MindinsightException."""
condition
=
{
'learning_rate'
:
{
'gt'
:
[
1.0
]
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter learning_rate is invalid. It should be a dict and the value should be a float or a integer"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter learning_rate is invalid. It should be a dict and "
"the value should be a float or a integer"
,
condition
)
...
...
@@ -132,11 +138,9 @@ class TestValidateSearchModelCondition(TestCase):
'ge'
:
1
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter loss_function is invalid. It should be a dict and the value should be a string"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter loss_function is invalid. It should be a dict and "
"the value should be a string"
,
condition
)
...
...
@@ -145,12 +149,9 @@ class TestValidateSearchModelCondition(TestCase):
'in'
:
2
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter train_dataset_count is invalid. It should be a dict "
"and the value should be a integer between 0"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
...
...
@@ -162,14 +163,14 @@ class TestValidateSearchModelCondition(TestCase):
'eq'
:
'xxx'
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter network is invalid. It should be a dict and the value should be a string"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter network is invalid. It should be a dict and "
"the value should be a string"
,
condition
)
def
test_validate_search_model_condition_mindinsight_exception_3
(
self
):
"""Test the mothod of validate_search_model_condition with MindinsightException."""
condition
=
{
'batch_size'
:
{
'lt'
:
2
,
...
...
@@ -179,11 +180,8 @@ class TestValidateSearchModelCondition(TestCase):
'eq'
:
222
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter batch_size is invalid. It should be a non-negative integer."
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
...
...
@@ -192,12 +190,9 @@ class TestValidateSearchModelCondition(TestCase):
'lt'
:
-
2
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter test_dataset_count is invalid. It should be a dict "
"and the value should be a integer between 0"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
...
...
@@ -206,11 +201,8 @@ class TestValidateSearchModelCondition(TestCase):
'lt'
:
False
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter epoch is invalid. It should be a positive integer."
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
...
...
@@ -219,65 +211,79 @@ class TestValidateSearchModelCondition(TestCase):
"ge"
:
""
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter learning_rate is invalid. It should be a dict and the value should be a float or a integer"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter learning_rate is invalid. It should be a dict and "
"the value should be a float or a integer"
,
condition
)
def
test_validate_search_model_condition_mindinsight_exception_4
(
self
):
"""Test the mothod of validate_search_model_condition with MindinsightException."""
condition
=
{
"train_dataset_count"
:
{
"ge"
:
8.0
}
}
self
.
assertRaisesRegex
(
MindInsightException
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter train_dataset_count is invalid. It should be a dict "
"and the value should be a integer between 0"
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
condition
=
{
1
:
{
"ge"
:
8.0
'metric_attribute'
:
{
'ge'
:
'xxx'
}
}
self
.
assertRaisesRegex
(
LineageParamValueError
,
"The search attribute not supported."
,
validate_search_model_condition
,
SearchModelConditionParameter
,
self
.
_assert_raise_of_mindinsight_exception
(
"The parameter metric_attribute is invalid. "
"It should be a dict and the value should be a float or a integer"
,
condition
)
condition
=
{
'metric_'
:
{
"ge"
:
8.0
}
}
LineageParamValueError
(
'The search attribute not supported.'
)
self
.
assertRaisesRegex
(
LineageParamValueError
,
"The search attribute not supported."
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
def
_assert_raise
(
self
,
exception
,
msg
,
condition
):
"""
Assert raise by unittest.
condition
=
{
'metric_attribute'
:
{
'ge'
:
'xxx'
}
}
Args:
exception (Type): Exception class expected to be raised.
msg (msg): Expected error message.
condition (dict): The parameter of search condition.
"""
self
.
assertRaisesRegex
(
MindInsightException
,
"The parameter metric_attribute is invalid. "
"It should be a dict and the value should be a float or a integer"
,
exception
,
msg
,
validate_search_model_condition
,
SearchModelConditionParameter
,
condition
)
def
_assert_raise_of_mindinsight_exception
(
self
,
msg
,
condition
):
"""
Assert raise of MindinsightException by unittest.
Args:
msg (msg): Expected error message.
condition (dict): The parameter of search condition.
"""
self
.
_assert_raise
(
MindInsightException
,
msg
,
condition
)
def
_assert_raise_of_lineage_param_value_error
(
self
,
msg
,
condition
):
"""
Assert raise of LineageParamValueError by unittest.
Args:
msg (msg): Expected error message.
condition (dict): The parameter of search condition.
"""
self
.
_assert_raise
(
LineageParamValueError
,
msg
,
condition
)
def
_assert_raise_of_lineage_param_type_error
(
self
,
msg
,
condition
):
"""
Assert raise of LineageParamTypeError by unittest.
Args:
msg (msg): Expected error message.
condition (dict): The parameter of search condition.
"""
self
.
_assert_raise
(
LineageParamTypeError
,
msg
,
condition
)
tests/ut/lineagemgr/querier/event_data.py
浏览文件 @
4a614930
...
...
@@ -15,6 +15,9 @@
"""The event data in querier test."""
import
json
from
....utils.mindspore.dataset.engine.serializer_deserializer
import
\
SERIALIZED_PIPELINE
EVENT_TRAIN_DICT_0
=
{
'wall_time'
:
1581499557.7017336
,
'train_lineage'
:
{
...
...
@@ -373,49 +376,4 @@ EVENT_DATASET_DICT_0 = {
}
}
DATASET_DICT_0
=
{
'op_type'
:
'BatchDataset'
,
'op_module'
:
'minddata.dataengine.datasets'
,
'num_parallel_workers'
:
None
,
'drop_remainder'
:
True
,
'batch_size'
:
10
,
'children'
:
[
{
'op_type'
:
'MapDataset'
,
'op_module'
:
'minddata.dataengine.datasets'
,
'num_parallel_workers'
:
None
,
'input_columns'
:
[
'label'
],
'output_columns'
:
[
None
],
'operations'
:
[
{
'tensor_op_module'
:
'minddata.transforms.c_transforms'
,
'tensor_op_name'
:
'OneHot'
,
'num_classes'
:
10
}
],
'children'
:
[
{
'op_type'
:
'MnistDataset'
,
'shard_id'
:
None
,
'num_shards'
:
None
,
'op_module'
:
'minddata.dataengine.datasets'
,
'dataset_dir'
:
'/home/anthony/MindData/tests/dataset/data/testMnistData'
,
'num_parallel_workers'
:
None
,
'shuffle'
:
None
,
'num_samples'
:
100
,
'sampler'
:
{
'sampler_module'
:
'minddata.dataengine.samplers'
,
'sampler_name'
:
'RandomSampler'
,
'replacement'
:
True
,
'num_samples'
:
100
},
'children'
:
[]
}
]
}
]
}
DATASET_DICT_0
=
SERIALIZED_PIPELINE
tests/ut/lineagemgr/querier/test_querier.py
浏览文件 @
4a614930
...
...
@@ -140,6 +140,98 @@ def get_lineage_infos():
return
lineage_infos
LINEAGE_INFO_0
=
{
'summary_dir'
:
'/path/to/summary0'
,
**
event_data
.
EVENT_TRAIN_DICT_0
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_0
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_0
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
}
LINEAGE_INFO_1
=
{
'summary_dir'
:
'/path/to/summary1'
,
**
event_data
.
EVENT_TRAIN_DICT_1
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_1
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_1
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
}
LINEAGE_FILTRATION_0
=
create_filtration_result
(
'/path/to/summary0'
,
event_data
.
EVENT_TRAIN_DICT_0
,
event_data
.
EVENT_EVAL_DICT_0
,
event_data
.
METRIC_0
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_1
=
create_filtration_result
(
'/path/to/summary1'
,
event_data
.
EVENT_TRAIN_DICT_1
,
event_data
.
EVENT_EVAL_DICT_1
,
event_data
.
METRIC_1
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_2
=
create_filtration_result
(
'/path/to/summary2'
,
event_data
.
EVENT_TRAIN_DICT_2
,
event_data
.
EVENT_EVAL_DICT_2
,
event_data
.
METRIC_2
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_3
=
create_filtration_result
(
'/path/to/summary3'
,
event_data
.
EVENT_TRAIN_DICT_3
,
event_data
.
EVENT_EVAL_DICT_3
,
event_data
.
METRIC_3
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_4
=
create_filtration_result
(
'/path/to/summary4'
,
event_data
.
EVENT_TRAIN_DICT_4
,
event_data
.
EVENT_EVAL_DICT_4
,
event_data
.
METRIC_4
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_5
=
{
"summary_dir"
:
'/path/to/summary5'
,
"loss_function"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
None
,
"train_dataset_count"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
None
,
"test_dataset_count"
:
None
,
"network"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
{},
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
}
LINEAGE_FILTRATION_6
=
{
"summary_dir"
:
'/path/to/summary6'
,
"loss_function"
:
None
,
"train_dataset_path"
:
None
,
"train_dataset_count"
:
None
,
"test_dataset_path"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
None
,
"optimizer"
:
None
,
"learning_rate"
:
None
,
"epoch"
:
None
,
"batch_size"
:
None
,
"loss"
:
None
,
"model_size"
:
None
,
"metric"
:
event_data
.
METRIC_5
,
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
}
class
TestQuerier
(
TestCase
):
"""Test the class of `Querier`."""
@
mock
.
patch
(
'mindinsight.lineagemgr.querier.querier.LineageSummaryAnalyzer.get_summary_infos'
)
...
...
@@ -169,31 +261,13 @@ class TestQuerier(TestCase):
def
test_get_summary_lineage_success_1
(
self
):
"""Test the success of get_summary_lineage."""
expected_result
=
[
{
'summary_dir'
:
'/path/to/summary0'
,
**
event_data
.
EVENT_TRAIN_DICT_0
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_0
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_0
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
}
]
expected_result
=
[
LINEAGE_INFO_0
]
result
=
self
.
single_querier
.
get_summary_lineage
()
self
.
assertListEqual
(
expected_result
,
result
)
def
test_get_summary_lineage_success_2
(
self
):
"""Test the success of get_summary_lineage."""
expected_result
=
[
{
'summary_dir'
:
'/path/to/summary0'
,
**
event_data
.
EVENT_TRAIN_DICT_0
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_0
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_0
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
}
]
expected_result
=
[
LINEAGE_INFO_0
]
result
=
self
.
single_querier
.
get_summary_lineage
(
summary_dir
=
'/path/to/summary0'
)
...
...
@@ -216,20 +290,8 @@ class TestQuerier(TestCase):
def
test_get_summary_lineage_success_4
(
self
):
"""Test the success of get_summary_lineage."""
expected_result
=
[
{
'summary_dir'
:
'/path/to/summary0'
,
**
event_data
.
EVENT_TRAIN_DICT_0
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_0
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_0
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
},
{
'summary_dir'
:
'/path/to/summary1'
,
**
event_data
.
EVENT_TRAIN_DICT_1
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_1
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_1
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
},
LINEAGE_INFO_0
,
LINEAGE_INFO_1
,
{
'summary_dir'
:
'/path/to/summary2'
,
**
event_data
.
EVENT_TRAIN_DICT_2
[
'train_lineage'
],
...
...
@@ -274,15 +336,7 @@ class TestQuerier(TestCase):
def
test_get_summary_lineage_success_5
(
self
):
"""Test the success of get_summary_lineage."""
expected_result
=
[
{
'summary_dir'
:
'/path/to/summary1'
,
**
event_data
.
EVENT_TRAIN_DICT_1
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_1
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_1
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
}
]
expected_result
=
[
LINEAGE_INFO_1
]
result
=
self
.
multi_querier
.
get_summary_lineage
(
summary_dir
=
'/path/to/summary1'
)
...
...
@@ -341,20 +395,8 @@ class TestQuerier(TestCase):
}
expected_result
=
{
'object'
:
[
create_filtration_result
(
'/path/to/summary1'
,
event_data
.
EVENT_TRAIN_DICT_1
,
event_data
.
EVENT_EVAL_DICT_1
,
event_data
.
METRIC_1
,
event_data
.
DATASET_DICT_0
,
),
create_filtration_result
(
'/path/to/summary2'
,
event_data
.
EVENT_TRAIN_DICT_2
,
event_data
.
EVENT_EVAL_DICT_2
,
event_data
.
METRIC_2
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_1
,
LINEAGE_FILTRATION_2
],
'count'
:
2
,
}
...
...
@@ -377,20 +419,8 @@ class TestQuerier(TestCase):
}
expected_result
=
{
'object'
:
[
create_filtration_result
(
'/path/to/summary2'
,
event_data
.
EVENT_TRAIN_DICT_2
,
event_data
.
EVENT_EVAL_DICT_2
,
event_data
.
METRIC_2
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary3'
,
event_data
.
EVENT_TRAIN_DICT_3
,
event_data
.
EVENT_EVAL_DICT_3
,
event_data
.
METRIC_3
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_2
,
LINEAGE_FILTRATION_3
],
'count'
:
2
,
}
...
...
@@ -405,20 +435,8 @@ class TestQuerier(TestCase):
}
expected_result
=
{
'object'
:
[
create_filtration_result
(
'/path/to/summary2'
,
event_data
.
EVENT_TRAIN_DICT_2
,
event_data
.
EVENT_EVAL_DICT_2
,
event_data
.
METRIC_2
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary3'
,
event_data
.
EVENT_TRAIN_DICT_3
,
event_data
.
EVENT_EVAL_DICT_3
,
event_data
.
METRIC_3
,
event_data
.
DATASET_DICT_0
)
LINEAGE_FILTRATION_2
,
LINEAGE_FILTRATION_3
],
'count'
:
7
,
}
...
...
@@ -429,82 +447,13 @@ class TestQuerier(TestCase):
"""Test the success of filter_summary_lineage."""
expected_result
=
{
'object'
:
[
create_filtration_result
(
'/path/to/summary0'
,
event_data
.
EVENT_TRAIN_DICT_0
,
event_data
.
EVENT_EVAL_DICT_0
,
event_data
.
METRIC_0
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary1'
,
event_data
.
EVENT_TRAIN_DICT_1
,
event_data
.
EVENT_EVAL_DICT_1
,
event_data
.
METRIC_1
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary2'
,
event_data
.
EVENT_TRAIN_DICT_2
,
event_data
.
EVENT_EVAL_DICT_2
,
event_data
.
METRIC_2
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary3'
,
event_data
.
EVENT_TRAIN_DICT_3
,
event_data
.
EVENT_EVAL_DICT_3
,
event_data
.
METRIC_3
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary4'
,
event_data
.
EVENT_TRAIN_DICT_4
,
event_data
.
EVENT_EVAL_DICT_4
,
event_data
.
METRIC_4
,
event_data
.
DATASET_DICT_0
),
{
"summary_dir"
:
'/path/to/summary5'
,
"loss_function"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
None
,
"train_dataset_count"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
None
,
"test_dataset_count"
:
None
,
"network"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
{},
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
},
{
"summary_dir"
:
'/path/to/summary6'
,
"loss_function"
:
None
,
"train_dataset_path"
:
None
,
"train_dataset_count"
:
None
,
"test_dataset_path"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
None
,
"optimizer"
:
None
,
"learning_rate"
:
None
,
"epoch"
:
None
,
"batch_size"
:
None
,
"loss"
:
None
,
"model_size"
:
None
,
"metric"
:
event_data
.
METRIC_5
,
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
}
LINEAGE_FILTRATION_0
,
LINEAGE_FILTRATION_1
,
LINEAGE_FILTRATION_2
,
LINEAGE_FILTRATION_3
,
LINEAGE_FILTRATION_4
,
LINEAGE_FILTRATION_5
,
LINEAGE_FILTRATION_6
],
'count'
:
7
,
}
...
...
@@ -519,15 +468,7 @@ class TestQuerier(TestCase):
}
}
expected_result
=
{
'object'
:
[
create_filtration_result
(
'/path/to/summary4'
,
event_data
.
EVENT_TRAIN_DICT_4
,
event_data
.
EVENT_EVAL_DICT_4
,
event_data
.
METRIC_4
,
event_data
.
DATASET_DICT_0
),
],
'object'
:
[
LINEAGE_FILTRATION_4
],
'count'
:
1
,
}
result
=
self
.
multi_querier
.
filter_summary_lineage
(
condition
=
condition
)
...
...
@@ -541,82 +482,13 @@ class TestQuerier(TestCase):
}
expected_result
=
{
'object'
:
[
create_filtration_result
(
'/path/to/summary0'
,
event_data
.
EVENT_TRAIN_DICT_0
,
event_data
.
EVENT_EVAL_DICT_0
,
event_data
.
METRIC_0
,
event_data
.
DATASET_DICT_0
),
{
"summary_dir"
:
'/path/to/summary5'
,
"loss_function"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
None
,
"train_dataset_count"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
None
,
"test_dataset_count"
:
None
,
"network"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
{},
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
},
create_filtration_result
(
'/path/to/summary1'
,
event_data
.
EVENT_TRAIN_DICT_1
,
event_data
.
EVENT_EVAL_DICT_1
,
event_data
.
METRIC_1
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary2'
,
event_data
.
EVENT_TRAIN_DICT_2
,
event_data
.
EVENT_EVAL_DICT_2
,
event_data
.
METRIC_2
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary3'
,
event_data
.
EVENT_TRAIN_DICT_3
,
event_data
.
EVENT_EVAL_DICT_3
,
event_data
.
METRIC_3
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary4'
,
event_data
.
EVENT_TRAIN_DICT_4
,
event_data
.
EVENT_EVAL_DICT_4
,
event_data
.
METRIC_4
,
event_data
.
DATASET_DICT_0
),
{
"summary_dir"
:
'/path/to/summary6'
,
"loss_function"
:
None
,
"train_dataset_path"
:
None
,
"train_dataset_count"
:
None
,
"test_dataset_path"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
None
,
"optimizer"
:
None
,
"learning_rate"
:
None
,
"epoch"
:
None
,
"batch_size"
:
None
,
"loss"
:
None
,
"model_size"
:
None
,
"metric"
:
event_data
.
METRIC_5
,
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
}
LINEAGE_FILTRATION_0
,
LINEAGE_FILTRATION_5
,
LINEAGE_FILTRATION_1
,
LINEAGE_FILTRATION_2
,
LINEAGE_FILTRATION_3
,
LINEAGE_FILTRATION_4
,
LINEAGE_FILTRATION_6
],
'count'
:
7
,
}
...
...
@@ -631,82 +503,13 @@ class TestQuerier(TestCase):
}
expected_result
=
{
'object'
:
[
{
"summary_dir"
:
'/path/to/summary6'
,
"loss_function"
:
None
,
"train_dataset_path"
:
None
,
"train_dataset_count"
:
None
,
"test_dataset_path"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
None
,
"optimizer"
:
None
,
"learning_rate"
:
None
,
"epoch"
:
None
,
"batch_size"
:
None
,
"loss"
:
None
,
"model_size"
:
None
,
"metric"
:
event_data
.
METRIC_5
,
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
},
create_filtration_result
(
'/path/to/summary4'
,
event_data
.
EVENT_TRAIN_DICT_4
,
event_data
.
EVENT_EVAL_DICT_4
,
event_data
.
METRIC_4
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary3'
,
event_data
.
EVENT_TRAIN_DICT_3
,
event_data
.
EVENT_EVAL_DICT_3
,
event_data
.
METRIC_3
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary2'
,
event_data
.
EVENT_TRAIN_DICT_2
,
event_data
.
EVENT_EVAL_DICT_2
,
event_data
.
METRIC_2
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary1'
,
event_data
.
EVENT_TRAIN_DICT_1
,
event_data
.
EVENT_EVAL_DICT_1
,
event_data
.
METRIC_1
,
event_data
.
DATASET_DICT_0
),
create_filtration_result
(
'/path/to/summary0'
,
event_data
.
EVENT_TRAIN_DICT_0
,
event_data
.
EVENT_EVAL_DICT_0
,
event_data
.
METRIC_0
,
event_data
.
DATASET_DICT_0
),
{
"summary_dir"
:
'/path/to/summary5'
,
"loss_function"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
None
,
"train_dataset_count"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
None
,
"test_dataset_count"
:
None
,
"network"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
{},
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
}
LINEAGE_FILTRATION_6
,
LINEAGE_FILTRATION_4
,
LINEAGE_FILTRATION_3
,
LINEAGE_FILTRATION_2
,
LINEAGE_FILTRATION_1
,
LINEAGE_FILTRATION_0
,
LINEAGE_FILTRATION_5
],
'count'
:
7
,
}
...
...
@@ -722,15 +525,7 @@ class TestQuerier(TestCase):
}
}
expected_result
=
{
'object'
:
[
create_filtration_result
(
'/path/to/summary4'
,
event_data
.
EVENT_TRAIN_DICT_4
,
event_data
.
EVENT_EVAL_DICT_4
,
event_data
.
METRIC_4
,
event_data
.
DATASET_DICT_0
),
],
'object'
:
[
LINEAGE_FILTRATION_4
],
'count'
:
1
,
}
result
=
self
.
multi_querier
.
filter_summary_lineage
(
condition
=
condition
)
...
...
@@ -809,20 +604,8 @@ class TestQuerier(TestCase):
querier
=
Querier
(
summary_path
)
querier
.
_parse_failed_paths
.
append
(
'/path/to/summary1/log1'
)
expected_result
=
[
{
'summary_dir'
:
'/path/to/summary0'
,
**
event_data
.
EVENT_TRAIN_DICT_0
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_0
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_0
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
},
{
'summary_dir'
:
'/path/to/summary1'
,
**
event_data
.
EVENT_TRAIN_DICT_1
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_1
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_1
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
}
LINEAGE_INFO_0
,
LINEAGE_INFO_1
]
result
=
querier
.
get_summary_lineage
()
self
.
assertListEqual
(
expected_result
,
result
)
...
...
@@ -842,17 +625,7 @@ class TestQuerier(TestCase):
querier
.
_parse_failed_paths
.
append
(
'/path/to/summary1/log1'
)
args
[
0
].
return_value
=
create_lineage_info
(
None
,
None
,
None
)
expected_result
=
[
{
'summary_dir'
:
'/path/to/summary0'
,
**
event_data
.
EVENT_TRAIN_DICT_0
[
'train_lineage'
],
'metric'
:
event_data
.
METRIC_0
,
'valid_dataset'
:
event_data
.
EVENT_EVAL_DICT_0
[
'evaluation_lineage'
][
'valid_dataset'
],
'dataset_graph'
:
event_data
.
DATASET_DICT_0
}
]
expected_result
=
[
LINEAGE_INFO_0
]
result
=
querier
.
get_summary_lineage
()
self
.
assertListEqual
(
expected_result
,
result
)
self
.
assertListEqual
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录