# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np from mindspore import Model from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindarmour.attacks.gradient_method import FastGradientSignMethod from mindarmour.utils.logger import LogUtil from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics from mindarmour.fuzzing.fuzzing import Fuzzing from lenet5_net import LeNet5 sys.path.append("..") from data_processing import generate_mnist_dataset LOGGER = LogUtil.get_instance() TAG = 'Fuzz_test' LOGGER.set_level('INFO') def test_lenet_mnist_fuzzing(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # upload trained network ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) model = Model(net) # get training data data_list = "./MNIST_datasets/train" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=True) train_images = [] for data in ds.create_tuple_iterator(): images = data[0].astype(np.float32) train_images.append(images) train_images = np.concatenate(train_images, axis=0) # initialize fuzz test with training dataset model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) # fuzz test with original test data # get test data data_list = "./MNIST_datasets/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=True) test_images = [] test_labels = [] for data in ds.create_tuple_iterator(): images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) test_images = np.concatenate(test_images, axis=0) test_labels = np.concatenate(test_labels, axis=0) initial_seeds = [] # make initial seeds for img, label in zip(test_images, test_labels): initial_seeds.append([img, label, 0]) initial_seeds = initial_seeds[:100] model_coverage_test.test_adequacy_coverage_calculate(np.array(test_images[:100]).astype(np.float32)) LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc()) model_fuzz_test = Fuzzing(initial_seeds, model, train_images, 20) failed_tests = model_fuzz_test.fuzzing() model_coverage_test.test_adequacy_coverage_calculate(np.array(failed_tests).astype(np.float32)) LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc()) if __name__ == '__main__': test_lenet_mnist_fuzzing()