# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Model-fuzz coverage test. """ import numpy as np import pytest from mindspore.train import Model import mindspore.nn as nn from mindspore.nn import Cell from mindspore import context from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindarmour.attacks.gradient_method import FastGradientSignMethod from mindarmour.utils.logger import LogUtil from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics LOGGER = LogUtil.get_instance() TAG = 'Neuron coverage test' LOGGER.set_level('INFO') # for user class Net(Cell): """ Construct the network of target model. Examples: >>> net = Net() """ def __init__(self): """ Introduce the layers used for network construction. """ super(Net, self).__init__() self._relu = nn.ReLU() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ out = self._relu(inputs) return out @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_card @pytest.mark.component_mindarmour def test_lenet_mnist_coverage_cpu(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # load network net = Net() model = Model(net) # initialize fuzz test with training dataset training_data = (np.random.random((10000, 10))*20).astype(np.float32) model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, training_data) # fuzz test with original test data # get test data test_data = (np.random.random((2000, 10))*20).astype(np.float32) test_labels = np.random.randint(0, 10, 2000).astype(np.int32) model_fuzz_test.calculate_coverage(test_data) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) # generate adv_data loss = SoftmaxCrossEntropyWithLogits(sparse=True) attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) adv_data = attack.batch_generate(test_data, test_labels, batch_size=32) model_fuzz_test.calculate_coverage(adv_data, bias_coefficient=0.5) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_lenet_mnist_coverage_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") # load network net = Net() model = Model(net) # initialize fuzz test with training dataset training_data = (np.random.random((10000, 10))*20).astype(np.float32) model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, training_data) # fuzz test with original test data # get test data test_data = (np.random.random((2000, 10))*20).astype(np.float32) test_labels = np.random.randint(0, 10, 2000) test_labels = (np.eye(10)[test_labels]).astype(np.float32) model_fuzz_test.calculate_coverage(test_data) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) # generate adv_data attack = FastGradientSignMethod(net, eps=0.3) adv_data = attack.batch_generate(test_data, test_labels, batch_size=32) model_fuzz_test.calculate_coverage(adv_data, bias_coefficient=0.5) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())