# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import mindspore.nn as nn from mindspore import context from mindspore.nn.metrics import Accuracy from mindspore.train import Model from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from lenet5_net import LeNet5 from mindarmour.utils.logger import LogUtil sys.path.append("..") from data_processing import generate_mnist_dataset LOGGER = LogUtil.get_instance() TAG = "Lenet5_train" def mnist_train(epoch_size, batch_size, lr, momentum): mnist_path = "./MNIST_unzip/" ds = generate_mnist_dataset(os.path.join(mnist_path, "train"), batch_size=batch_size, repeat_size=1) network = LeNet5() net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), lr, momentum) config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory="./trained_ckpt_file/", config=config_ck) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) LOGGER.info(TAG, "============== Starting Training ==============") model.train(epoch_size, ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False) LOGGER.info(TAG, "============== Starting Testing ==============") ckpt_file_name = "trained_ckpt_file/checkpoint_lenet-10_1875.ckpt" param_dict = load_checkpoint(ckpt_file_name) load_param_into_net(network, param_dict) ds_eval = generate_mnist_dataset(os.path.join(mnist_path, "test"), batch_size=batch_size) acc = model.eval(ds_eval, dataset_sink_mode=False) LOGGER.info(TAG, "============== Accuracy: %s ==============", acc) if __name__ == '__main__': context.set_context(mode=context.GRAPH_MODE, device_target="CPU", enable_mem_reuse=False) mnist_train(10, 32, 0.01, 0.9)