# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time import numpy as np import pytest from scipy.special import softmax from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour.attacks.black.pso_attack import PSOAttack from mindarmour.attacks.black.black_model import BlackModel from mindarmour.utils.logger import LogUtil from mindarmour.evaluations.attack_evaluation import AttackEvaluate from lenet5_net import LeNet5 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") sys.path.append("..") from data_processing import generate_mnist_dataset LOGGER = LogUtil.get_instance() TAG = 'PSO_Attack' class ModelToBeAttacked(BlackModel): """model to be attack""" def __init__(self, network): super(ModelToBeAttacked, self).__init__() self._network = network def predict(self, inputs): """predict""" result = self._network(Tensor(inputs.astype(np.float32))) return result.asnumpy() @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pso_attack_on_mnist(): """ PSO-Attack test """ # upload trained network ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) # get test data data_list = "./MNIST_unzip/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size=batch_size) # prediction accuracy before attack model = ModelToBeAttacked(net) batch_num = 3 # the number of batches of attacking samples test_images = [] test_labels = [] predict_labels = [] i = 0 for data in ds.create_tuple_iterator(): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(images), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.concatenate(test_labels) accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) # attacking attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, sparse=True) start_time = time.clock() success_list, adv_data, query_list = attack.generate( np.concatenate(test_images), np.concatenate(test_labels)) stop_time = time.clock() LOGGER.info(TAG, 'success_list: %s', success_list) LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) pred_logits_adv = model.predict(adv_data) # rescale predict confidences into (0, 1). pred_logits_adv = softmax(pred_logits_adv, axis=1) pred_labels_adv = np.argmax(pred_logits_adv, axis=1) accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) test_labels_onehot = np.eye(10)[np.concatenate(test_labels)] attack_evaluate = AttackEvaluate(np.concatenate(test_images), test_labels_onehot, adv_data, pred_logits_adv) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info(TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim()) LOGGER.info(TAG, 'The average costing time is %s', (stop_time - start_time)/(batch_num*batch_size)) if __name__ == '__main__': test_pso_attack_on_mnist()