# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import sys import mindspore.nn as nn from mindspore import context, Tensor from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindarmour.utils.logger import LogUtil from lenet5_net import LeNet5 sys.path.append("..") from data_processing import generate_mnist_dataset LOGGER = LogUtil.get_instance() TAG = "Lenet5_train" def mnist_train(epoch_size, batch_size, lr, momentum): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", enable_mem_reuse=False) lr = lr momentum = momentum epoch_size = epoch_size mnist_path = "./MNIST_unzip/" ds = generate_mnist_dataset(os.path.join(mnist_path, "train"), batch_size=batch_size, repeat_size=1) network = LeNet5() net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), lr, momentum) config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory="./trained_ckpt_file/", config=config_ck) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) LOGGER.info(TAG, "============== Starting Training ==============") model.train(epoch_size, ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False) LOGGER.info(TAG, "============== Starting Testing ==============") ckpt_file_name = "trained_ckpt_file/checkpoint_lenet-10_1875.ckpt" param_dict = load_checkpoint(ckpt_file_name) load_param_into_net(network, param_dict) ds_eval = generate_mnist_dataset(os.path.join(mnist_path, "test"), batch_size=batch_size) acc = model.eval(ds_eval, dataset_sink_mode=False) LOGGER.info(TAG, "============== Accuracy: %s ==============", acc) if __name__ == '__main__': mnist_train(10, 32, 0.01, 0.9)