# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time import numpy as np import pytest from mindspore import Model from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn import SoftmaxCrossEntropyWithLogits from scipy.special import softmax from lenet5_net import LeNet5 from mindarmour.attacks.iterative_gradient_method import \ MomentumDiverseInputIterativeMethod from mindarmour.evaluations.attack_evaluation import AttackEvaluate from mindarmour.utils.logger import LogUtil sys.path.append("..") from data_processing import generate_mnist_dataset LOGGER = LogUtil.get_instance() TAG = 'M_DI2_FGSM_Test' LOGGER.set_level('INFO') @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_momentum_diverse_input_iterative_method(): """ M-DI2-FGSM Attack Test """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") # upload trained network ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) # get test data data_list = "./MNIST_unzip/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=False) # prediction accuracy before attack model = Model(net) batch_num = 32 # the number of batches of attacking samples test_images = [] test_labels = [] predict_labels = [] i = 0 for data in ds.create_tuple_iterator(): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.argmax(np.concatenate(test_labels), axis=1) accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) # attacking attack = MomentumDiverseInputIterativeMethod(net) start_time = time.clock() adv_data = attack.batch_generate(np.concatenate(test_images), np.concatenate(test_labels), batch_size=32) stop_time = time.clock() pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() # rescale predict confidences into (0, 1). pred_logits_adv = softmax(pred_logits_adv, axis=1) pred_labels_adv = np.argmax(pred_logits_adv, axis=1) accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), np.concatenate(test_labels), adv_data.transpose(0, 2, 3, 1), pred_logits_adv) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info(TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim()) LOGGER.info(TAG, 'The average costing time is %s', (stop_time - start_time)/(batch_num*batch_size)) def test_momentum_diverse_input_iterative_method_cpu(): """ M-DI2-FGSM Attack Test for CPU device. """ context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # upload trained network ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) # get test data data_list = "./MNIST_unzip/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size) # prediction accuracy before attack model = Model(net) batch_num = 32 # the number of batches of attacking samples test_images = [] test_labels = [] predict_labels = [] i = 0 for data in ds.create_tuple_iterator(): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.concatenate(test_labels) accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) # attacking loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) attack = MomentumDiverseInputIterativeMethod(net, loss_fn=loss) start_time = time.clock() adv_data = attack.batch_generate(np.concatenate(test_images), true_labels, batch_size=32) stop_time = time.clock() pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() # rescale predict confidences into (0, 1). pred_logits_adv = softmax(pred_logits_adv, axis=1) pred_labels_adv = np.argmax(pred_logits_adv, axis=1) accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), np.eye(10)[true_labels], adv_data.transpose(0, 2, 3, 1), pred_logits_adv) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info(TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim()) LOGGER.info(TAG, 'The average costing time is %s', (stop_time - start_time)/(batch_num*batch_size)) if __name__ == '__main__': test_momentum_diverse_input_iterative_method_cpu()