# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Eval""" import os import argparse import datetime import mindspore.nn as nn from mindspore import context from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.common import dtype as mstype from mindarmour.utils import LogUtil from vgg.vgg import vgg16 from vgg.dataset import vgg_create_dataset100 from vgg.config import cifar_cfg as cfg class ParameterReduce(nn.Cell): """ParameterReduce""" def __init__(self): super(ParameterReduce, self).__init__() self.cast = P.Cast() self.reduce = P.AllReduce() def construct(self, x): one = self.cast(F.scalar_to_array(1.0), mstype.float32) out = x*one ret = self.reduce(out) return ret def parse_args(cloud_args=None): """parse_args""" parser = argparse.ArgumentParser('mindspore classification test') parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], help='device where the code will be implemented. (Default: Ascend)') # dataset related parser.add_argument('--data_path', type=str, default='', help='eval data dir') parser.add_argument('--per_batch_size', default=32, type=int, help='batch size for per npu') # network related parser.add_argument('--graph_ckpt', type=int, default=1, help='graph ckpt or feed ckpt') parser.add_argument('--pre_trained', default='', type=str, help='fully path of pretrained model to load. ' 'If it is a direction, it will test all ckpt') # logging related parser.add_argument('--log_path', type=str, default='outputs/', help='path to save log') parser.add_argument('--rank', type=int, default=0, help='local rank of distributed') parser.add_argument('--group_size', type=int, default=1, help='world size of distributed') args_opt = parser.parse_args() args_opt = merge_args(args_opt, cloud_args) args_opt.image_size = cfg.image_size args_opt.num_classes = cfg.num_classes args_opt.per_batch_size = cfg.batch_size args_opt.momentum = cfg.momentum args_opt.weight_decay = cfg.weight_decay args_opt.buffer_size = cfg.buffer_size args_opt.pad_mode = cfg.pad_mode args_opt.padding = cfg.padding args_opt.has_bias = cfg.has_bias args_opt.batch_norm = cfg.batch_norm args_opt.initialize_mode = cfg.initialize_mode args_opt.has_dropout = cfg.has_dropout args_opt.image_size = list(map(int, args_opt.image_size.split(','))) return args_opt def merge_args(args, cloud_args): """merge_args""" args_dict = vars(args) if isinstance(cloud_args, dict): for key in cloud_args.keys(): val = cloud_args[key] if key in args_dict and val: arg_type = type(args_dict[key]) if arg_type is not type(None): val = arg_type(val) args_dict[key] = val return args def test(cloud_args=None): """test""" args = parse_args(cloud_args) context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, device_target=args.device_target, save_graphs=False) if os.getenv('DEVICE_ID', "not_set").isdigit(): context.set_context(device_id=int(os.getenv('DEVICE_ID'))) args.outputs_dir = os.path.join(args.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = LogUtil.get_instance() args.logger.set_level(20) net = vgg16(num_classes=args.num_classes, args=args) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, args.momentum, weight_decay=args.weight_decay) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) param_dict = load_checkpoint(args.pre_trained) load_param_into_net(net, param_dict) net.set_train(False) dataset_test = vgg_create_dataset100(args.data_path, args.image_size, args.per_batch_size, training=False) res = model.eval(dataset_test) print("result: ", res) if __name__ == "__main__": test()