# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Projected adversarial defense test. """ import logging import numpy as np import pytest from mindspore import context from mindspore import nn from mindspore.nn.optim.momentum import Momentum from mock_net import Net from mindarmour.defenses.projected_adversarial_defense import \ ProjectedAdversarialDefense from mindarmour.utils.logger import LogUtil LOGGER = LogUtil.get_instance() TAG = 'Pad_Test' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pad(): """UT for projected adversarial defense.""" num_classes = 10 batch_size = 32 sparse = False context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target='Ascend') # create test data inputs = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) labels = np.random.randint(num_classes, size=batch_size).astype(np.int32) if not sparse: labels = np.eye(num_classes)[labels].astype(np.float32) # construct network net = Net() loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse) optimizer = Momentum(net.trainable_params(), 0.001, 0.9) # defense pad = ProjectedAdversarialDefense(net, loss_fn=loss_fn, optimizer=optimizer) LOGGER.set_level(logging.DEBUG) LOGGER.debug(TAG, '---start projected adversarial defense--') loss = pad.defense(inputs, labels) LOGGER.debug(TAG, '---end projected adversarial defense--') assert np.any(loss >= 0.0)