# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Adversarial defense test. """ import logging import numpy as np import pytest from mindspore import Tensor from mindspore import context from mindspore import nn from mindspore.nn.optim.momentum import Momentum from mock_net import Net from mindarmour.defenses.adversarial_defense import AdversarialDefense from mindarmour.utils.logger import LogUtil LOGGER = LogUtil.get_instance() TAG = 'Ad_Test' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_ad(): """UT for adversarial defense.""" num_classes = 10 batch_size = 32 sparse = False context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target='Ascend') # create test data inputs = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) labels = np.random.randint(num_classes, size=batch_size).astype(np.int32) if not sparse: labels = np.eye(num_classes)[labels].astype(np.float32) net = Net() loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse) optimizer = Momentum(learning_rate=Tensor(np.array([0.001], np.float32)), momentum=Tensor(np.array([0.9], np.float32)), params=net.trainable_params()) ad_defense = AdversarialDefense(net, loss_fn=loss_fn, optimizer=optimizer) LOGGER.set_level(logging.DEBUG) LOGGER.debug(TAG, '--start adversarial defense--') loss = ad_defense.defense(inputs, labels) LOGGER.debug(TAG, '--end adversarial defense--') assert np.any(loss >= 0.0)