# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Examples of membership inference """ import argparse import sys from vgg.vgg import vgg16 from vgg.config import cifar_cfg as cfg from vgg.utils.util import get_param_groups from vgg.dataset import vgg_create_dataset100 import numpy as np from mindspore.train import Model from mindspore.train.serialization import load_param_into_net, load_checkpoint import mindspore.nn as nn from mindarmour.diff_privacy.evaluation.membership_inference import MembershipInference from mindarmour.utils import LogUtil logging = LogUtil.get_instance() logging.set_level(20) sys.path.append("../../") TAG = "membership inference example" if __name__ == "__main__": parser = argparse.ArgumentParser("main case arg parser.") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend"]) parser.add_argument("--data_path", type=str, required=True, help="Data home path for Cifar100.") parser.add_argument("--pre_trained", type=str, required=True, help="Checkpoint path.") args = parser.parse_args() args.num_classes = cfg.num_classes args.batch_norm = cfg.batch_norm args.has_dropout = cfg.has_dropout args.has_bias = cfg.has_bias args.initialize_mode = cfg.initialize_mode args.padding = cfg.padding args.pad_mode = cfg.pad_mode args.weight_decay = cfg.weight_decay args.loss_scale = cfg.loss_scale # load the pretrained model net = vgg16(args.num_classes, args) loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) opt = nn.Momentum(params=get_param_groups(net), learning_rate=0.1, momentum=0.9, weight_decay=args.weight_decay, loss_scale=args.loss_scale) load_param_into_net(net, load_checkpoint(args.pre_trained)) model = Model(network=net, loss_fn=loss, optimizer=opt) logging.info(TAG, "The model is loaded.") attacker = MembershipInference(model) config = [ { "method": "knn", "params": { "n_neighbors": [3, 5, 7] } }, { "method": "lr", "params": { "C": np.logspace(-4, 2, 10) } }, { "method": "mlp", "params": { "hidden_layer_sizes": [(64,), (32, 32)], "solver": ["adam"], "alpha": [0.0001, 0.001, 0.01] } }, { "method": "rf", "params": { "n_estimators": [100], "max_features": ["auto", "sqrt"], "max_depth": [5, 10, 20, None], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4] } } ] # load and split dataset train_dataset = vgg_create_dataset100(data_home=args.data_path, image_size=(224, 224), batch_size=64, num_samples=10000, shuffle=False) test_dataset = vgg_create_dataset100(data_home=args.data_path, image_size=(224, 224), batch_size=64, num_samples=10000, shuffle=False, training=False) train_train, eval_train = train_dataset.split([0.8, 0.2]) train_test, eval_test = test_dataset.split([0.8, 0.2]) logging.info(TAG, "Data loading is complete.") logging.info(TAG, "Start training the inference model.") attacker.train(train_train, train_test, config) logging.info(TAG, "The inference model is training complete.") logging.info(TAG, "Start the evaluation phase") metrics = ["precision", "accuracy", "recall"] result = attacker.eval(eval_train, eval_test, metrics) # Show the metrics for each attack method. count = len(config) for i in range(count): print("Method: {}, {}".format(config[i]["method"], result[i]))