# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Spatial-smoothing detector test. """ import numpy as np import pytest import mindspore.ops.operations as M from mindspore import Model from mindspore.nn import Cell from mindspore import context from mindarmour.detectors.spatial_smoothing import SpatialSmoothing context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") # for use class Net(Cell): """ Construct the network of target model. """ def __init__(self): super(Net, self).__init__() self._softmax = M.Softmax() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ return self._softmax(inputs) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_spatial_smoothing(): """ Compute mindspore result. """ input_shape = (50, 3) np.random.seed(1) input_np = np.random.randn(*input_shape).astype(np.float32) np.random.seed(2) adv_np = np.random.randn(*input_shape).astype(np.float32) # mock user model model = Model(Net()) detector = SpatialSmoothing(model) # Training threshold = detector.fit(input_np) detector.set_threshold(threshold.item()) detected_res = np.array(detector.detect(adv_np)) idx = np.where(detected_res > 0) expected_value = np.array([10, 39, 48]) assert np.all(idx == expected_value) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_spatial_smoothing_diff(): """ Compute mindspore result. """ input_shape = (50, 3) np.random.seed(1) input_np = np.random.randn(*input_shape).astype(np.float32) np.random.seed(2) adv_np = np.random.randn(*input_shape).astype(np.float32) # mock user model model = Model(Net()) detector = SpatialSmoothing(model) # Training detector.fit(input_np) diffs = detector.detect_diff(adv_np) expected_value = np.array([0.20959496, 0.69537306, 0.13034256, 0.7421039, 0.41419053, 0.56346416, 0.4277994, 0.3240941, 0.048190027, 0.6806958, 1.1405756, 0.587804, 0.40533313, 0.2875523, 0.36801508, 0.61993587, 0.49286827, 0.13222921, 0.68012404, 0.4164942, 0.25758877, 0.6008735, 0.60623455, 0.34981924, 0.3945489, 0.879787, 0.3934811, 0.23387678, 0.63480926, 0.56435543, 0.16067612, 0.57489645, 0.21772699, 0.55924356, 0.5186635, 0.7094835, 0.0613693, 0.13305652, 0.11505881, 1.2404268, 0.50948, 0.15797901, 0.44473758, 0.2495422, 0.38254014, 0.543059, 0.06452079, 0.36902517, 1.1845329, 0.3870097]) assert np.allclose(diffs, expected_value, 0.0001, 0.0001)