# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Natural adversarial defense test. """ import numpy as np import pytest import logging from mindspore import nn from mindspore import context from mindspore.nn.optim.momentum import Momentum from mindarmour.defenses.natural_adversarial_defense import \ NaturalAdversarialDefense from mindarmour.utils.logger import LogUtil from mock_net import Net LOGGER = LogUtil.get_instance() TAG = 'Nad_Test' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_nad(): """UT for natural adversarial defense.""" num_classes = 10 batch_size = 16 sparse = False context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target='Ascend') # create test data inputs = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) labels = np.random.randint(num_classes, size=batch_size).astype(np.int32) if not sparse: labels = np.eye(num_classes)[labels].astype(np.float32) net = Net() loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse) optimizer = Momentum(net.trainable_params(), 0.001, 0.9) # defense nad = NaturalAdversarialDefense(net, loss_fn=loss_fn, optimizer=optimizer) LOGGER.set_level(logging.DEBUG) LOGGER.debug(TAG, '---start natural adversarial defense--') loss = nad.defense(inputs, labels) LOGGER.debug(TAG, '---end natural adversarial defense--') assert np.any(loss >= 0.0)