# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PSO-Attack test. """ import numpy as np import pytest from mindspore import Tensor import mindspore.nn as nn from mindspore.nn import Cell from mindspore import context from mindarmour.attacks.black.pso_attack import PSOAttack from mindarmour.attacks.black.black_model import BlackModel # for user class ModelToBeAttacked(BlackModel): """model to be attack""" def __init__(self, network): super(ModelToBeAttacked, self).__init__() self._network = network def predict(self, inputs): """predict""" result = self._network(Tensor(inputs.astype(np.float32))) return result.asnumpy() class SimpleNet(Cell): """ Construct the network of target model. Examples: >>> net = SimpleNet() """ def __init__(self): """ Introduce the layers used for network construction. """ super(SimpleNet, self).__init__() self._relu = nn.ReLU() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ out = self._relu(inputs) return out @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pso_attack(): """ PSO_Attack test """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") batch_size = 6 net = SimpleNet() inputs = np.random.rand(batch_size, 10) model = ModelToBeAttacked(net) labels = np.random.randint(low=0, high=10, size=batch_size) labels = np.eye(10)[labels] labels = labels.astype(np.float32) attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, sparse=False) _, adv_data, _ = attack.generate(inputs, labels) assert np.any(inputs != adv_data) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pso_attack_targeted(): """ PSO_Attack test """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") batch_size = 6 net = SimpleNet() inputs = np.random.rand(batch_size, 10) model = ModelToBeAttacked(net) labels = np.random.randint(low=0, high=10, size=batch_size) labels = np.eye(10)[labels] labels = labels.astype(np.float32) attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, targeted=True, sparse=False) _, adv_data, _ = attack.generate(inputs, labels) assert np.any(inputs != adv_data) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_inference @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pso_attack_gpu(): """ PSO_Attack test """ context.set_context(device_target="GPU") batch_size = 6 net = SimpleNet() inputs = np.random.rand(batch_size, 10) model = ModelToBeAttacked(net) labels = np.random.randint(low=0, high=10, size=batch_size) labels = np.eye(10)[labels] labels = labels.astype(np.float32) attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, sparse=False) _, adv_data, _ = attack.generate(inputs, labels) assert np.any(inputs != adv_data) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pso_attack_cpu(): """ PSO_Attack test """ context.set_context(mode=context.GRAPH_MODE, device_target="CPU") batch_size = 6 net = SimpleNet() inputs = np.random.rand(batch_size, 10) model = ModelToBeAttacked(net) labels = np.random.randint(low=0, high=10, size=batch_size) labels = np.eye(10)[labels] labels = labels.astype(np.float32) attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, sparse=False) _, adv_data, _ = attack.generate(inputs, labels) assert np.any(inputs != adv_data)