# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time import numpy as np import pytest from scipy.special import softmax from mindspore import Model from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour.attacks.deep_fool import DeepFool from mindarmour.utils.logger import LogUtil from mindarmour.evaluations.attack_evaluation import AttackEvaluate from lenet5_net import LeNet5 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") sys.path.append("..") from data_processing import generate_mnist_dataset LOGGER = LogUtil.get_instance() TAG = 'DeepFool_Test' @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_deepfool_attack(): """ DeepFool-Attack test """ # upload trained network ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) # get test data data_list = "./MNIST_unzip/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size=batch_size) # prediction accuracy before attack model = Model(net) batch_num = 3 # the number of batches of attacking samples test_images = [] test_labels = [] predict_labels = [] i = 0 for data in ds.create_tuple_iterator(): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.concatenate(test_labels) accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) # attacking classes = 10 attack = DeepFool(net, classes, norm_level=2, bounds=(0.0, 1.0)) start_time = time.clock() adv_data = attack.batch_generate(np.concatenate(test_images), np.concatenate(test_labels), batch_size=32) stop_time = time.clock() pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() # rescale predict confidences into (0, 1). pred_logits_adv = softmax(pred_logits_adv, axis=1) pred_labels_adv = np.argmax(pred_logits_adv, axis=1) accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) test_labels = np.eye(10)[np.concatenate(test_labels)] attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), test_labels, adv_data.transpose(0, 2, 3, 1), pred_logits_adv) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info(TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim()) LOGGER.info(TAG, 'The average costing time is %s', (stop_time - start_time)/(batch_num*batch_size)) if __name__ == '__main__': test_deepfool_attack()