# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ different Privacy test. """ import pytest from mindspore import context from mindspore import Tensor from mindspore.common import dtype as mstype from mindarmour.privacy.diff_privacy import NoiseAdaGaussianRandom from mindarmour.privacy.diff_privacy import AdaClippingWithGaussianRandom from mindarmour.privacy.diff_privacy import NoiseMechanismsFactory from mindarmour.privacy.diff_privacy import ClipMechanismsFactory @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_graph_factory(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Step' factory = NoiseMechanismsFactory() noise_mech = factory.create('Gaussian', norm_bound, initial_noise_multiplier) noise = noise_mech(grad) print('Gaussian noise: ', noise) ada_noise_mech = factory.create('AdaGaussian', norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) ada_noise = ada_noise_mech(grad) print('ada noise: ', ada_noise) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_factory(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Step' factory = NoiseMechanismsFactory() noise_mech = factory.create('Gaussian', norm_bound, initial_noise_multiplier) noise = noise_mech(grad) print('Gaussian noise: ', noise) ada_noise_mech = factory.create('AdaGaussian', norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) ada_noise = ada_noise_mech(grad) print('ada noise: ', ada_noise) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Step' factory = NoiseMechanismsFactory() noise_mech = factory.create('Gaussian', norm_bound, initial_noise_multiplier) noise = noise_mech(grad) print('Gaussian noise: ', noise) ada_noise_mech = factory.create('AdaGaussian', norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) ada_noise = ada_noise_mech(grad) print('ada noise: ', ada_noise) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_graph_ada_gaussian(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 noise_decay_rate = 0.5 decay_policy = 'Step' ada_noise_mech = NoiseAdaGaussianRandom(norm_bound, initial_noise_multiplier, seed=0, noise_decay_rate=noise_decay_rate, decay_policy=decay_policy) res = ada_noise_mech(grad) print(res) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_ada_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 noise_decay_rate = 0.5 decay_policy = 'Step' ada_noise_mech = NoiseAdaGaussianRandom(norm_bound, initial_noise_multiplier, seed=0, noise_decay_rate=noise_decay_rate, decay_policy=decay_policy) res = ada_noise_mech(grad) print(res) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_graph_exponential(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Exp' factory = NoiseMechanismsFactory() ada_noise = factory.create('AdaGaussian', norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) ada_noise = ada_noise(grad) print('ada noise: ', ada_noise) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_exponential(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Exp' factory = NoiseMechanismsFactory() ada_noise = factory.create('AdaGaussian', norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) ada_noise = ada_noise(grad) print('ada noise: ', ada_noise) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_ada_clip_gaussian_random_pynative(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") decay_policy = 'Linear' beta = Tensor(0.5, mstype.float32) norm_bound = Tensor(1.0, mstype.float32) beta_stddev = 0.1 learning_rate = 0.1 target_unclipped_quantile = 0.3 ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy, learning_rate=learning_rate, target_unclipped_quantile=target_unclipped_quantile, fraction_stddev=beta_stddev, seed=1) next_norm_bound = ada_clip(beta, norm_bound) print('Liner next norm clip:', next_norm_bound) decay_policy = 'Geometric' ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy, learning_rate=learning_rate, target_unclipped_quantile=target_unclipped_quantile, fraction_stddev=beta_stddev, seed=1) next_norm_bound = ada_clip(beta, norm_bound) print('Geometric next norm clip:', next_norm_bound) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_ada_clip_gaussian_random_graph(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") decay_policy = 'Linear' beta = Tensor(0.5, mstype.float32) norm_bound = Tensor(1.0, mstype.float32) beta_stddev = 0.1 learning_rate = 0.1 target_unclipped_quantile = 0.3 ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy, learning_rate=learning_rate, target_unclipped_quantile=target_unclipped_quantile, fraction_stddev=beta_stddev, seed=1) next_norm_bound = ada_clip(beta, norm_bound) print('Liner next norm clip:', next_norm_bound) decay_policy = 'Geometric' ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy, learning_rate=learning_rate, target_unclipped_quantile=target_unclipped_quantile, fraction_stddev=beta_stddev, seed=1) next_norm_bound = ada_clip(beta, norm_bound) print('Geometric next norm clip:', next_norm_bound) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_clip_mech_factory(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") decay_policy = 'Linear' beta = Tensor(0.5, mstype.float32) norm_bound = Tensor(1.0, mstype.float32) beta_stddev = 0.1 learning_rate = 0.1 target_unclipped_quantile = 0.3 factory = ClipMechanismsFactory() ada_clip = factory.create('Gaussian', decay_policy=decay_policy, learning_rate=learning_rate, target_unclipped_quantile=target_unclipped_quantile, fraction_stddev=beta_stddev) next_norm_bound = ada_clip(beta, norm_bound) print('next_norm_bound: ', next_norm_bound) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_graph_clip_mech_factory(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") decay_policy = 'Linear' beta = Tensor(0.5, mstype.float32) norm_bound = Tensor(1.0, mstype.float32) beta_stddev = 0.1 learning_rate = 0.1 target_unclipped_quantile = 0.3 factory = ClipMechanismsFactory() ada_clip = factory.create('Gaussian', decay_policy=decay_policy, learning_rate=learning_rate, target_unclipped_quantile=target_unclipped_quantile, fraction_stddev=beta_stddev) next_norm_bound = ada_clip(beta, norm_bound) print('next_norm_bound: ', next_norm_bound)