# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ensemble adversarial defense test. """ import logging import numpy as np import pytest from mindspore import context from mindspore import nn from mindspore.nn.optim.momentum import Momentum from mindarmour.adv_robustness.attacks import FastGradientSignMethod from mindarmour.adv_robustness.attacks import \ ProjectedGradientDescent from mindarmour.adv_robustness.defenses import EnsembleAdversarialDefense from mindarmour.utils.logger import LogUtil from ut.python.utils.mock_net import Net LOGGER = LogUtil.get_instance() TAG = 'Ead_Test' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_ead(): """UT for ensemble adversarial defense.""" num_classes = 10 batch_size = 64 sparse = False context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target='Ascend') # create test data inputs = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) labels = np.random.randint(num_classes, size=batch_size).astype(np.int32) if not sparse: labels = np.eye(num_classes)[labels].astype(np.float32) net = Net() loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=sparse) optimizer = Momentum(net.trainable_params(), 0.001, 0.9) net = Net() fgsm = FastGradientSignMethod(net) pgd = ProjectedGradientDescent(net) ead = EnsembleAdversarialDefense(net, [fgsm, pgd], loss_fn=loss_fn, optimizer=optimizer) LOGGER.set_level(logging.DEBUG) LOGGER.debug(TAG, '---start ensemble adversarial defense--') loss = ead.defense(inputs, labels) LOGGER.debug(TAG, '---end ensemble adversarial defense--') assert np.any(loss >= 0.0)