# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CW-Attack test. """ import numpy as np import pytest import mindspore.ops.operations as M from mindspore.nn import Cell from mindspore import context from mindarmour.adv_robustness.attacks import CarliniWagnerL2Attack context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") # for user class Net(Cell): """ Construct the network of target model. Examples: >>> net = Net() """ def __init__(self): """ Introduce the layers used for network construction. """ super(Net, self).__init__() self._softmax = M.Softmax() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ out = self._softmax(inputs) return out @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_cw_attack(): """ CW-Attack test """ net = Net() input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) label_np = np.array([3]).astype(np.int64) num_classes = input_np.shape[1] attack = CarliniWagnerL2Attack(net, num_classes, targeted=False) adv_data = attack.generate(input_np, label_np) assert np.any(input_np != adv_data) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_cw_attack_targeted(): """ CW-Attack test """ net = Net() input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) target_np = np.array([1]).astype(np.int64) num_classes = input_np.shape[1] attack = CarliniWagnerL2Attack(net, num_classes, targeted=True) adv_data = attack.generate(input_np, target_np) assert np.any(input_np != adv_data)