# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ python lenet5_dp_model_train.py --data_path /YourDataPath --micro_batches=2 """ import os import argparse import mindspore.nn as nn from mindspore import context from mindspore.train.callback import ModelCheckpoint from mindspore.train.callback import CheckpointConfig from mindspore.train.callback import LossMonitor from mindspore.nn.metrics import Accuracy from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from mindspore.dataset.transforms.vision import Inter import mindspore.common.dtype as mstype from mindarmour.diff_privacy import DPModel from mindarmour.diff_privacy import DPOptimizerClassFactory from mindarmour.diff_privacy import PrivacyMonitorFactory from mindarmour.utils.logger import LogUtil from lenet5_net import LeNet5 from lenet5_config import mnist_cfg as cfg LOGGER = LogUtil.get_instance() LOGGER.set_level('INFO') TAG = 'Lenet5_train' def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1, sparse=True): """ create dataset for training or testing """ # define dataset ds1 = ds.MnistDataset(data_path) # define operation parameters resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images if not sparse: one_hot_enco = C.OneHot(10) ds1 = ds1.map(input_columns="label", operations=one_hot_enco, num_parallel_workers=num_parallel_workers) type_cast_op = C.TypeCast(mstype.float32) ds1 = ds1.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 ds1 = ds1.shuffle(buffer_size=buffer_size) ds1 = ds1.batch(batch_size, drop_remainder=True) ds1 = ds1.repeat(repeat_size) return ds1 if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore MNIST Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./MNIST_unzip", help='path where the dataset is saved') parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True') parser.add_argument('--micro_batches', type=int, default=32, help='optional, if use differential privacy, need to set micro_batches') parser.add_argument('--l2_norm_bound', type=float, default=1.0, help='optional, if use differential privacy, need to set l2_norm_bound') parser.add_argument('--initial_noise_multiplier', type=float, default=1.5, help='optional, if use differential privacy, need to set initial_noise_multiplier') args = parser.parse_args() context.set_context(mode=context.PYNATIVE_MODE, device_target=args.device_target) network = LeNet5() net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory='./trained_ckpt_file/', config=config_ck) ds_train = generate_mnist_dataset(os.path.join(args.data_path, "train"), cfg.batch_size, cfg.epoch_size) if args.micro_batches and cfg.batch_size % args.micro_batches != 0: raise ValueError("Number of micro_batches should divide evenly batch_size") gaussian_mech = DPOptimizerClassFactory(args.micro_batches) gaussian_mech.set_mechanisms('Gaussian', norm_bound=args.l2_norm_bound, initial_noise_multiplier=args.initial_noise_multiplier) net_opt = gaussian_mech.create('Momentum')(params=network.trainable_params(), learning_rate=cfg.lr, momentum=cfg.momentum) rdp_monitor = PrivacyMonitorFactory.create('rdp', num_samples=60000, batch_size=cfg.batch_size, initial_noise_multiplier=args.initial_noise_multiplier* args.l2_norm_bound, per_print_times=10) model = DPModel(micro_batches=args.micro_batches, norm_clip=args.l2_norm_bound, dp_mech=gaussian_mech.mech, network=network, loss_fn=net_loss, optimizer=net_opt, metrics={"Accuracy": Accuracy()}) LOGGER.info(TAG, "============== Starting Training ==============") model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor(), rdp_monitor], dataset_sink_mode=args.dataset_sink_mode) LOGGER.info(TAG, "============== Starting Testing ==============") ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt' param_dict = load_checkpoint(ckpt_file_name) load_param_into_net(network, param_dict) ds_eval = generate_mnist_dataset(os.path.join(args.data_path, 'test'), batch_size=cfg.batch_size) acc = model.eval(ds_eval, dataset_sink_mode=False) LOGGER.info(TAG, "============== Accuracy: %s ==============", acc)