# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np from mindspore import Model from mindspore import context from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindspore.train.serialization import load_checkpoint, load_param_into_net from lenet5_net import LeNet5 from mindarmour.attacks.gradient_method import FastGradientSignMethod from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics from mindarmour.utils.logger import LogUtil sys.path.append("..") from data_processing import generate_mnist_dataset LOGGER = LogUtil.get_instance() TAG = 'Neuron coverage test' LOGGER.set_level('INFO') def test_lenet_mnist_coverage(): # upload trained network ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) model = Model(net) # get training data data_list = "./MNIST_unzip/train" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=True) train_images = [] for data in ds.create_tuple_iterator(): images = data[0].astype(np.float32) train_images.append(images) train_images = np.concatenate(train_images, axis=0) # initialize fuzz test with training dataset model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images) # fuzz test with original test data # get test data data_list = "./MNIST_unzip/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=True) test_images = [] test_labels = [] for data in ds.create_tuple_iterator(): images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) test_images = np.concatenate(test_images, axis=0) test_labels = np.concatenate(test_labels, axis=0) model_fuzz_test.test_adequacy_coverage_calculate(test_images) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) # generate adv_data loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) adv_data = attack.batch_generate(test_images, test_labels, batch_size=32) model_fuzz_test.test_adequacy_coverage_calculate(adv_data, bias_coefficient=0.5) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) if __name__ == '__main__': # device_target can be "CPU", "GPU" or "Ascend" context.set_context(mode=context.GRAPH_MODE, device_target="CPU") test_lenet_mnist_coverage()