# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ dataset processing. """ import os from mindspore.common import dtype as mstype import mindspore.dataset as de import mindspore.dataset.transforms.c_transforms as C import mindspore.dataset.transforms.vision.c_transforms as vision def vgg_create_dataset100(data_home, image_size, batch_size, rank_id=0, rank_size=1, repeat_num=1, training=True, num_samples=None, shuffle=True): """Data operations.""" de.config.set_seed(1) data_dir = os.path.join(data_home, "train") if not training: data_dir = os.path.join(data_home, "test") if num_samples is not None: data_set = de.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, num_samples=num_samples, shuffle=shuffle) else: data_set = de.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id) input_columns = ["fine_label"] output_columns = ["label"] data_set = data_set.rename(input_columns=input_columns, output_columns=output_columns) data_set = data_set.project(["image", "label"]) rescale = 1.0 / 255.0 shift = 0.0 # define map operations random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_horizontal_op = vision.RandomHorizontalFlip() resize_op = vision.Resize(image_size) # interpolation default BILINEAR rescale_op = vision.Rescale(rescale, shift) normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023)) changeswap_op = vision.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) c_trans = [] if training: c_trans = [random_crop_op, random_horizontal_op] c_trans += [resize_op, rescale_op, normalize_op, changeswap_op] # apply map operations on images data_set = data_set.map(input_columns="label", operations=type_cast_op) data_set = data_set.map(input_columns="image", operations=c_trans) # apply repeat operations data_set = data_set.repeat(repeat_num) # apply shuffle operations # data_set = data_set.shuffle(buffer_size=1000) # apply batch operations data_set = data_set.batch(batch_size=batch_size, drop_remainder=True) return data_set