# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from mindspore import nn from mindspore import context from mindspore.model_zoo.lenet import LeNet5 from mindspore.train.model import Model from mindarmour.diff_privacy import DPOptimizerClassFactory @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_optimizer(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") network = LeNet5() lr = 0.01 momentum = 0.9 micro_batches = 2 loss = nn.SoftmaxCrossEntropyWithLogits() gaussian_mech = DPOptimizerClassFactory(micro_batches) gaussian_mech.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0) net_opt = gaussian_mech.create('SGD')(params=network.trainable_params(), learning_rate=lr, momentum=momentum) _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_inference @pytest.mark.env_card @pytest.mark.component_mindarmour def test_optimizer_gpu(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") network = LeNet5() lr = 0.01 momentum = 0.9 micro_batches = 2 loss = nn.SoftmaxCrossEntropyWithLogits() gaussian_mech = DPOptimizerClassFactory(micro_batches) gaussian_mech.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0) net_opt = gaussian_mech.create('SGD')(params=network.trainable_params(), learning_rate=lr, momentum=momentum) _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_card @pytest.mark.component_mindarmour def test_optimizer_cpu(): context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU") network = LeNet5() lr = 0.01 momentum = 0.9 micro_batches = 2 loss = nn.SoftmaxCrossEntropyWithLogits() gaussian_mech = DPOptimizerClassFactory(micro_batches) gaussian_mech.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0) net_opt = gaussian_mech.create('SGD')(params=network.trainable_params(), learning_rate=lr, momentum=momentum) _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)