# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ different Privacy test. """ import pytest from mindspore import context from mindarmour.diff_privacy import GaussianRandom from mindarmour.diff_privacy import AdaGaussianRandom from mindarmour.diff_privacy import MechanismsFactory @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") shape = (3, 2, 4) norm_bound = 1.0 initial_noise_multiplier = 0.1 net = GaussianRandom(norm_bound, initial_noise_multiplier) res = net(shape) print(res) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_ada_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") shape = (3, 2, 4) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = "Step" net = AdaGaussianRandom(norm_bound, initial_noise_multiplier, alpha, decay_policy) res = net(shape) print(res) def test_factory(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") shape = (3, 2, 4) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = "Step" noise_mechanism = MechanismsFactory() noise_construct = noise_mechanism.create('Gaussian', norm_bound, initial_noise_multiplier) noise = noise_construct(shape) print('Gaussian noise: ', noise) ada_mechanism = MechanismsFactory() ada_noise_construct = ada_mechanism.create('AdaGaussian', norm_bound, initial_noise_multiplier, alpha, decay_policy) ada_noise = ada_noise_construct(shape) print('ada noise: ', ada_noise) if __name__ == '__main__': # device_target can be "CPU", "GPU" or "Ascend" context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")