# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DP-Model test. """ import pytest import numpy as np from mindspore import nn from mindspore import context import mindspore.dataset as ds from mindarmour.diff_privacy import DPModel from mindarmour.diff_privacy import NoiseMechanismsFactory from mindarmour.diff_privacy import ClipMechanismsFactory from mindarmour.diff_privacy import DPOptimizerClassFactory from test_network import LeNet5 def dataset_generator(batch_size, batches): """mock training data.""" data = np.random.random((batches*batch_size, 1, 32, 32)).astype( np.float32) label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) for i in range(batches): yield data[i*batch_size:(i + 1)*batch_size],\ label[i*batch_size:(i + 1)*batch_size] @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_dp_model_with_pynative_mode(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") norm_bound = 1.0 initial_noise_multiplier = 0.01 network = LeNet5() batch_size = 32 batches = 128 epochs = 1 micro_batches = 2 loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) factory_opt = DPOptimizerClassFactory(micro_batches=micro_batches) factory_opt.set_mechanisms('Gaussian', norm_bound=norm_bound, initial_noise_multiplier=initial_noise_multiplier) net_opt = factory_opt.create('Momentum')(network.trainable_params(), learning_rate=0.1, momentum=0.9) clip_mech = ClipMechanismsFactory().create('Gaussian', decay_policy='Linear', learning_rate=0.01, target_unclipped_quantile=0.9, fraction_stddev=0.01) model = DPModel(micro_batches=micro_batches, norm_bound=norm_bound, clip_mech=clip_mech, noise_mech=None, network=network, loss_fn=loss, optimizer=net_opt, metrics=None) ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label']) ms_ds.set_dataset_size(batch_size*batches) model.train(epochs, ms_ds, dataset_sink_mode=False) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_dp_model_with_graph_mode(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") norm_bound = 1.0 initial_noise_multiplier = 0.01 network = LeNet5() batch_size = 32 batches = 128 epochs = 1 loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) noise_mech = NoiseMechanismsFactory().create('Gaussian', norm_bound=norm_bound, initial_noise_multiplier=initial_noise_multiplier) clip_mech = ClipMechanismsFactory().create('Gaussian', decay_policy='Linear', learning_rate=0.01, target_unclipped_quantile=0.9, fraction_stddev=0.01) net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) model = DPModel(micro_batches=2, clip_mech=clip_mech, norm_bound=norm_bound, noise_mech=noise_mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None) ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label']) ms_ds.set_dataset_size(batch_size*batches) model.train(epochs, ms_ds, dataset_sink_mode=False) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_dp_model_with_graph_mode_ada_gaussian(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") norm_bound = 1.0 initial_noise_multiplier = 0.01 network = LeNet5() batch_size = 32 batches = 128 epochs = 1 alpha = 0.8 loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) noise_mech = NoiseMechanismsFactory().create('AdaGaussian', norm_bound=norm_bound, initial_noise_multiplier=initial_noise_multiplier, noise_decay_rate=alpha, noise_update='Exp') clip_mech = None net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) model = DPModel(micro_batches=2, clip_mech=clip_mech, norm_bound=norm_bound, noise_mech=noise_mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None) ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label']) ms_ds.set_dataset_size(batch_size*batches) model.train(epochs, ms_ds, dataset_sink_mode=False)