提交 fe97f43f 编写于 作者: Z zhenghuanhuan

Add differential privacy in GRAPH MODE context mode.

上级 bfd8d88d
......@@ -20,7 +20,7 @@ from easydict import EasyDict as edict
mnist_cfg = edict({
'num_classes': 10, # the number of classes of model's output
'lr': 0.01, # the learning rate of model's optimizer
'lr': 0.1, # the learning rate of model's optimizer
'momentum': 0.9, # the momentum value of model's optimizer
'epoch_size': 10, # training epochs
'batch_size': 256, # batch size for training
......@@ -33,7 +33,7 @@ mnist_cfg = edict({
'dataset_sink_mode': False, # whether deliver all training data to device one time 
'micro_batches': 16, # the number of small batches split from an original batch
'l2_norm_bound': 1.0, # the clip bound of the gradients of model's training parameters
'initial_noise_multiplier': 1.5, # the initial multiplication coefficient of the noise added to training
'initial_noise_multiplier': 0.2, # the initial multiplication coefficient of the noise added to training
# parameters' gradients
'mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training
'optimizer': 'Momentum' # the base optimizer used for Differential privacy training
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python lenet5_dp.py --data_path /YourDataPath --micro_batches=2
"""
import os
import mindspore.nn as nn
from mindspore import context
from mindspore.train.callback import ModelCheckpoint
from mindspore.train.callback import CheckpointConfig
from mindspore.train.callback import LossMonitor
from mindspore.nn.metrics import Accuracy
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.transforms.vision import Inter
import mindspore.common.dtype as mstype
from mindarmour.diff_privacy import DPModel
from mindarmour.diff_privacy import PrivacyMonitorFactory
from mindarmour.diff_privacy import MechanismsFactory
from mindarmour.utils.logger import LogUtil
from lenet5_net import LeNet5
from lenet5_config import mnist_cfg as cfg
LOGGER = LogUtil.get_instance()
LOGGER.set_level('INFO')
TAG = 'Lenet5_train'
def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1, sparse=True):
"""
create dataset for training or testing
"""
# define dataset
ds1 = ds.MnistDataset(data_path)
# define operation parameters
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
# define map operations
resize_op = CV.Resize((resize_height, resize_width),
interpolation=Inter.LINEAR)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
if not sparse:
one_hot_enco = C.OneHot(10)
ds1 = ds1.map(input_columns="label", operations=one_hot_enco,
num_parallel_workers=num_parallel_workers)
type_cast_op = C.TypeCast(mstype.float32)
ds1 = ds1.map(input_columns="label", operations=type_cast_op,
num_parallel_workers=num_parallel_workers)
ds1 = ds1.map(input_columns="image", operations=resize_op,
num_parallel_workers=num_parallel_workers)
ds1 = ds1.map(input_columns="image", operations=rescale_op,
num_parallel_workers=num_parallel_workers)
ds1 = ds1.map(input_columns="image", operations=hwc2chw_op,
num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
ds1 = ds1.shuffle(buffer_size=buffer_size)
ds1 = ds1.batch(batch_size, drop_remainder=True)
ds1 = ds1.repeat(repeat_size)
return ds1
if __name__ == "__main__":
# This configure can run both in pynative mode and graph mode
context.set_context(mode=context.PYNATIVE_MODE, device_target=cfg.device_target)
network = LeNet5()
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
directory='./trained_ckpt_file/',
config=config_ck)
# get training dataset
ds_train = generate_mnist_dataset(os.path.join(cfg.data_path, "train"),
cfg.batch_size,
cfg.epoch_size)
if cfg.micro_batches and cfg.batch_size % cfg.micro_batches != 0:
raise ValueError("Number of micro_batches should divide evenly batch_size")
# Create a factory class of DP mechanisms, this method is adding noise in gradients while training.
# Initial_noise_multiplier is suggested to be greater than 1.0, otherwise the privacy budget would be huge, which
# means that the privacy protection effect is weak. Mechanisms can be 'Gaussian' or 'AdaGaussian', in which noise
# would be decayed with 'AdaGaussian' mechanism while be constant with 'Gaussian' mechanism.
mech = MechanismsFactory().create(cfg.mechanisms,
norm_bound=cfg.l2_norm_bound,
initial_noise_multiplier=cfg.initial_noise_multiplier)
net_opt = nn.Momentum(params=network.trainable_params(), learning_rate=cfg.lr, momentum=cfg.momentum)
# Create a monitor for DP training. The function of the monitor is to compute and print the privacy budget(eps
# and delta) while training.
rdp_monitor = PrivacyMonitorFactory.create('rdp',
num_samples=60000,
batch_size=cfg.batch_size,
initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.l2_norm_bound,
per_print_times=10)
# Create the DP model for training.
model = DPModel(micro_batches=cfg.micro_batches,
norm_clip=cfg.l2_norm_bound,
mech=mech,
network=network,
loss_fn=net_loss,
optimizer=net_opt,
metrics={"Accuracy": Accuracy()})
LOGGER.info(TAG, "============== Starting Training ==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor(), rdp_monitor],
dataset_sink_mode=cfg.dataset_sink_mode)
LOGGER.info(TAG, "============== Starting Testing ==============")
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt'
param_dict = load_checkpoint(ckpt_file_name)
load_param_into_net(network, param_dict)
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), batch_size=cfg.batch_size)
acc = model.eval(ds_eval, dataset_sink_mode=False)
LOGGER.info(TAG, "============== Accuracy: %s ==============", acc)
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python lenet5_dp_model_train.py --data_path /YourDataPath --micro_batches=2
python lenet5_dp_pynative_mode.py --data_path /YourDataPath --micro_batches=2
"""
import os
......@@ -30,8 +30,8 @@ from mindspore.dataset.transforms.vision import Inter
import mindspore.common.dtype as mstype
from mindarmour.diff_privacy import DPModel
from mindarmour.diff_privacy import DPOptimizerClassFactory
from mindarmour.diff_privacy import PrivacyMonitorFactory
from mindarmour.diff_privacy import DPOptimizerClassFactory
from mindarmour.utils.logger import LogUtil
from lenet5_net import LeNet5
from lenet5_config import mnist_cfg as cfg
......@@ -86,8 +86,8 @@ def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1,
if __name__ == "__main__":
# This configure just can run in pynative mode.
context.set_context(mode=context.PYNATIVE_MODE, device_target=cfg.device_target)
network = LeNet5()
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
......@@ -103,34 +103,26 @@ if __name__ == "__main__":
if cfg.micro_batches and cfg.batch_size % cfg.micro_batches != 0:
raise ValueError("Number of micro_batches should divide evenly batch_size")
# Create a factory class of DP optimizer
gaussian_mech = DPOptimizerClassFactory(cfg.micro_batches)
# Set the method of adding noise in gradients while training. Initial_noise_multiplier is suggested to be greater
# than 1.0, otherwise the privacy budget would be huge, which means that the privacy protection effect is weak.
# mechanisms can be 'Gaussian' or 'AdaGaussian', in which noise would be decayed with 'AdaGaussian' mechanism while
# be constant with 'Gaussian' mechanism.
gaussian_mech.set_mechanisms(cfg.mechanisms,
# Create a factory class of DP mechanisms, this method is adding noise in gradients while training.
# Initial_noise_multiplier is suggested to be greater than 1.0, otherwise the privacy budget would be huge, which
# means that the privacy protection effect is weak. Mechanisms can be 'Gaussian' or 'AdaGaussian', in which noise
# would be decayed with 'AdaGaussian' mechanism while be constant with 'Gaussian' mechanism.
dp_opt = DPOptimizerClassFactory(micro_batches=cfg.micro_batches)
dp_opt.set_mechanisms(cfg.mechanisms,
norm_bound=cfg.l2_norm_bound,
initial_noise_multiplier=cfg.initial_noise_multiplier)
# Wrap the base optimizer for DP training. Momentum optimizer is suggested for LenNet5.
net_opt = gaussian_mech.create(cfg.optimizer)(params=network.trainable_params(),
learning_rate=cfg.lr,
momentum=cfg.momentum)
net_opt = dp_opt.create('Momentum')(params=network.trainable_params(), learning_rate=cfg.lr, momentum=cfg.momentum)
# Create a monitor for DP training. The function of the monitor is to compute and print the privacy budget(eps
# and delta) while training.
rdp_monitor = PrivacyMonitorFactory.create('rdp',
num_samples=60000,
batch_size=cfg.batch_size,
initial_noise_multiplier=cfg.initial_noise_multiplier,
per_print_times=50)
initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.l2_norm_bound,
per_print_times=10)
# Create the DP model for training.
model = DPModel(micro_batches=cfg.micro_batches,
norm_clip=cfg.l2_norm_bound,
dp_mech=gaussian_mech.mech,
mech=None,
network=network,
loss_fn=net_loss,
optimizer=net_opt,
......
......@@ -14,8 +14,6 @@
"""
Noise Mechanisms.
"""
import numpy as np
from mindspore import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
......@@ -24,6 +22,7 @@ from mindspore.common import dtype as mstype
from mindarmour.utils._check_param import check_param_type
from mindarmour.utils._check_param import check_value_positive
from mindarmour.utils._check_param import check_value_non_negative
from mindarmour.utils._check_param import check_param_in_range
......@@ -62,7 +61,8 @@ class Mechanisms(Cell):
"""
Basic class of noise generated mechanism.
"""
def construct(self, shape):
def construct(self, gradients):
"""
Construct function.
"""
......@@ -78,41 +78,47 @@ class GaussianRandom(Mechanisms):
initial_noise_multiplier(float): Ratio of the standard deviation of
Gaussian noise divided by the norm_bound, which will be used to
calculate privacy spent. Default: 1.5.
mean(float): Average value of random noise. Default: 0.0.
seed(int): Original random seed. Default: 0.
Returns:
Tensor, generated noise.
Tensor, generated noise with shape like given gradients.
Examples:
>>> shape = (3, 2, 4)
>>> gradients = Tensor([0.2, 0.9], mstype.float32)
>>> norm_bound = 1.0
>>> initial_noise_multiplier = 1.5
>>> initial_noise_multiplier = 0.1
>>> net = GaussianRandom(norm_bound, initial_noise_multiplier)
>>> res = net(shape)
>>> res = net(gradients)
>>> print(res)
"""
def __init__(self, norm_bound=1.0, initial_noise_multiplier=1.5):
def __init__(self, norm_bound=1.0, initial_noise_multiplier=1.5, mean=0.0, seed=0):
super(GaussianRandom, self).__init__()
self._norm_bound = check_value_positive('norm_bound', norm_bound)
self._norm_bound = Tensor(norm_bound, mstype.float32)
self._initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
initial_noise_multiplier,)
stddev = self._norm_bound*self._initial_noise_multiplier
self._stddev = stddev
self._mean = 0
initial_noise_multiplier)
self._initial_noise_multiplier = Tensor(initial_noise_multiplier, mstype.float32)
mean = check_param_type('mean', mean, float)
mean = check_value_non_negative('mean', mean)
self._mean = Tensor(mean, mstype.float32)
self._normal = P.Normal(seed=seed)
def construct(self, shape):
def construct(self, gradients):
"""
Generated Gaussian noise.
Args:
shape(tuple): The shape of gradients.
gradients(Tensor): The gradients.
Returns:
Tensor, generated noise.
Tensor, generated noise with shape like given gradients.
"""
shape = check_param_type('shape', shape, tuple)
noise = np.random.normal(self._mean, self._stddev, shape)
return Tensor(noise, mstype.float32)
shape = P.Shape()(gradients)
stddev = P.Mul()(self._norm_bound, self._initial_noise_multiplier)
noise = self._normal(shape, self._mean, stddev)
return noise
class AdaGaussianRandom(Mechanisms):
......@@ -126,54 +132,60 @@ class AdaGaussianRandom(Mechanisms):
initial_noise_multiplier(float): Ratio of the standard deviation of
Gaussian noise divided by the norm_bound, which will be used to
calculate privacy spent. Default: 5.0.
noise_decay_rate(float): Hyperparameter for controlling the noise decay.
mean(float): Average value of random noise. Default: 0.0
noise_decay_rate(float): Hyper parameter for controlling the noise decay.
Default: 6e-4.
decay_policy(str): Noise decay strategy include 'Step' and 'Time'.
Default: 'Time'.
seed(int): Original random seed. Default: 0.
Returns:
Tensor, generated noise.
Tensor, generated noise with shape like given gradients.
Examples:
>>> shape = (3, 2, 4)
>>> gradients = Tensor([0.2, 0.9], mstype.float32)
>>> norm_bound = 1.0
>>> initial_noise_multiplier = 0.1
>>> noise_decay_rate = 0.5
>>> initial_noise_multiplier = 5.0
>>> mean = 0.0
>>> noise_decay_rate = 6e-4
>>> decay_policy = "Time"
>>> net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
>>> net = AdaGaussianRandom(norm_bound, initial_noise_multiplier, mean
>>> noise_decay_rate, decay_policy)
>>> res = net(shape)
>>> res = net(gradients)
>>> print(res)
"""
def __init__(self, norm_bound=1.5, initial_noise_multiplier=5.0,
noise_decay_rate=6e-4, decay_policy='Time'):
def __init__(self, norm_bound=1.5, initial_noise_multiplier=5.0, mean=0.0,
noise_decay_rate=6e-4, decay_policy='Time', seed=0):
super(AdaGaussianRandom, self).__init__()
norm_bound = check_value_positive('norm_bound', norm_bound)
initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
initial_noise_multiplier = Tensor(np.array(initial_noise_multiplier, np.float32))
self._norm_bound = Tensor(norm_bound, mstype.float32)
initial_noise_multiplier = Tensor(initial_noise_multiplier, mstype.float32)
self._initial_noise_multiplier = Parameter(initial_noise_multiplier,
name='initial_noise_multiplier')
self._stddev = P.Mul()(self._norm_bound, self._initial_noise_multiplier)
self._noise_multiplier = Parameter(initial_noise_multiplier,
name='noise_multiplier')
norm_bound = check_value_positive('norm_bound', norm_bound)
self._norm_bound = Tensor(np.array(norm_bound, np.float32))
mean = check_param_type('mean', mean, float)
mean = check_value_non_negative('mean', mean)
self._mean = Tensor(mean, mstype.float32)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
self._noise_decay_rate = Tensor(np.array(noise_decay_rate, np.float32))
self._noise_decay_rate = Tensor(noise_decay_rate, mstype.float32)
if decay_policy not in ['Time', 'Step']:
raise NameError("The decay_policy must be in ['Time', 'Step'], but "
"get {}".format(decay_policy))
self._decay_policy = decay_policy
self._mean = 0.0
self._sub = P.Sub()
self._mul = P.Mul()
self._add = P.TensorAdd()
self._div = P.Div()
self._stddev = self._update_stddev()
self._dtype = mstype.float32
self._normal = P.Normal(seed=seed)
self._assign = P.Assign()
def _update_multiplier(self):
""" Update multiplier. """
......@@ -181,31 +193,32 @@ class AdaGaussianRandom(Mechanisms):
temp = self._div(self._initial_noise_multiplier,
self._noise_multiplier)
temp = self._add(temp, self._noise_decay_rate)
temp = self._div(self._initial_noise_multiplier, temp)
self._noise_multiplier = Parameter(temp, name='noise_multiplier')
self._noise_multiplier = self._assign(self._noise_multiplier,
self._div(self._initial_noise_multiplier, temp))
else:
one = Tensor(1, self._dtype)
temp = self._sub(one, self._noise_decay_rate)
temp = self._mul(temp, self._noise_multiplier)
self._noise_multiplier = Parameter(temp, name='noise_multiplier')
self._noise_multiplier = self._assign(self._noise_multiplier, self._mul(temp, self._noise_multiplier))
return self._noise_multiplier
def _update_stddev(self):
self._stddev = self._mul(self._noise_multiplier, self._norm_bound)
self._stddev = self._assign(self._stddev, self._mul(self._noise_multiplier, self._norm_bound))
return self._stddev
def construct(self, shape):
def construct(self, gradients):
"""
Generate adaptive Gaussian noise.
Args:
shape(tuple): The shape of gradients.
gradients(Tensor): The gradients.
Returns:
Tensor, generated noise.
Tensor, generated noise with shape like given gradients.
"""
shape = check_param_type('shape', shape, tuple)
noise = np.random.normal(self._mean, self._stddev.asnumpy(),
shape)
self._update_multiplier()
self._update_stddev()
return Tensor(noise, mstype.float32)
shape = P.Shape()(gradients)
noise = self._normal(shape, self._mean, self._stddev)
# pylint: disable=unused-variable
mt = self._update_multiplier()
# pylint: disable=unused-variable
std = self._update_stddev()
return noise
......@@ -14,13 +14,37 @@
"""
Differential privacy optimizer.
"""
import mindspore as ms
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
from mindarmour.diff_privacy.mechanisms.mechanisms import MechanismsFactory
from mindarmour.utils._check_param import check_int_positive
_grad_scale = C.MultitypeFuncGraph("grad_scale")
_reciprocal = P.Reciprocal()
@_grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
""" grad scaling """
return grad * _reciprocal(scale)
class _TupleAdd(nn.Cell):
def __init__(self):
super(_TupleAdd, self).__init__()
self.add = P.TensorAdd()
self.hyper_map = C.HyperMap()
def construct(self, input1, input2):
"""Add two tuple of data."""
out = self.hyper_map(self.add, input1, input2)
return out
class DPOptimizerClassFactory:
"""
......@@ -39,6 +63,7 @@ class DPOptimizerClassFactory:
>>> learning_rate=cfg.lr,
>>> momentum=cfg.momentum)
"""
def __init__(self, micro_batches=2):
self._mech_factory = MechanismsFactory()
self.mech = None
......@@ -78,6 +103,7 @@ class DPOptimizerClassFactory:
"""
Wrap original mindspore optimizer with `self._mech`.
"""
class DPOptimizer(cls):
"""
Initialize the DPOptimizerClass.
......@@ -85,23 +111,22 @@ class DPOptimizerClassFactory:
Returns:
Optimizer, Optimizer class.
"""
def __init__(self, *args, **kwargs):
super(DPOptimizer, self).__init__(*args, **kwargs)
self._mech = mech
self._tuple_add = _TupleAdd()
self._hyper_map = C.HyperMap()
self._micro_float = Tensor(micro_batches, mstype.float32)
def construct(self, gradients):
"""
construct a compute flow.
"""
g_len = len(gradients)
gradient_noise = list(gradients)
for i in range(g_len):
gradient_noise[i] = gradient_noise[i].asnumpy()
gradient_noise[i] = self._mech(gradient_noise[i].shape).asnumpy() + gradient_noise[i]
gradient_noise[i] = gradient_noise[i] / micro_batches
gradient_noise[i] = Tensor(gradient_noise[i], ms.float32)
gradients = tuple(gradient_noise)
gradients = super(DPOptimizer, self).construct(gradients)
grad_noise = self._hyper_map(self._mech, gradients)
grads = self._tuple_add(gradients, grad_noise)
grads = self._hyper_map(F.partial(_grad_scale, self._micro_float), grads)
gradients = super(DPOptimizer, self).construct(grads)
return gradients
return DPOptimizer
......@@ -16,7 +16,6 @@ Differential privacy model.
"""
from easydict import EasyDict as edict
import mindspore as ms
from mindspore.train.model import Model
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
......@@ -48,21 +47,19 @@ from mindspore.nn.wrap.loss_scale import _grad_overflow
from mindspore.nn import Cell
from mindspore import ParameterTuple
from mindarmour.diff_privacy.mechanisms import mechanisms
from mindarmour.utils._check_param import check_param_type
from mindarmour.utils._check_param import check_value_positive
from mindarmour.utils._check_param import check_int_positive
GRADIENT_CLIP_TYPE = 1
grad_scale = C.MultitypeFuncGraph("grad_scale")
reciprocal = P.Reciprocal()
_grad_scale = C.MultitypeFuncGraph("grad_scale")
_reciprocal = P.Reciprocal()
@grad_scale.register("Tensor", "Tensor")
@_grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
""" grad scaling """
return grad*reciprocal(scale)
return grad * F.cast(_reciprocal(scale), F.dtype(grad))
class DPModel(Model):
......@@ -72,7 +69,7 @@ class DPModel(Model):
Args:
micro_batches (int): The number of small batches split from an original batch. Default: 2.
norm_clip (float): Use to clip the bound, if set 1, will retun the original data. Default: 1.0.
dp_mech (Mechanisms): The object can generate the different type of noise. Default: None.
mech (Mechanisms): The object can generate the different type of noise. Default: None.
Examples:
>>> class Net(nn.Cell):
......@@ -94,32 +91,37 @@ class DPModel(Model):
>>>
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.01, momentum=0.9)
>>> gaussian_mech = DPOptimizerClassFactory()
>>> gaussian_mech.set_mechanisms('Gaussian',
>>> net_opt = Momentum(params=net.trainable_params(), learning_rate=0.01, momentum=0.9)
>>> mech = MechanismsFactory().create('Gaussian',
>>> norm_bound=args.l2_norm_bound,
>>> initial_noise_multiplier=args.initial_noise_multiplier)
>>> model = DPModel(micro_batches=2,
>>> norm_clip=1.0,
>>> dp_mech=gaussian_mech.mech,
>>> mech=mech,
>>> network=net,
>>> loss_fn=loss,
>>> optimizer=optim,
>>> optimizer=net_opt,
>>> metrics=None)
>>> dataset = get_dataset()
>>> model.train(2, dataset)
"""
def __init__(self, micro_batches=2, norm_clip=1.0, dp_mech=None, **kwargs):
def __init__(self, micro_batches=2, norm_clip=1.0, mech=None, **kwargs):
if micro_batches:
self._micro_batches = check_int_positive('micro_batches', micro_batches)
else:
self._micro_batches = None
norm_clip = check_param_type('norm_clip', norm_clip, float)
self._norm_clip = check_value_positive('norm_clip', norm_clip)
if isinstance(dp_mech, mechanisms.Mechanisms):
self._dp_mech = dp_mech
float_norm_clip = check_param_type('l2_norm_clip', norm_clip, float)
self._norm_clip = check_value_positive('l2_norm_clip', float_norm_clip)
if mech is not None and "DPOptimizer" in kwargs['optimizer'].__class__.__name__:
raise ValueError('DPOptimizer is not supported while mech is not None')
if mech is None:
if "DPOptimizer" in kwargs['optimizer'].__class__.__name__:
if context.get_context('mode') != context.PYNATIVE_MODE:
raise ValueError('DPOptimizer just support pynative mode currently.')
else:
raise TypeError('dp mechanisms should be instance of class Mechansms, but got {}'.format(type(dp_mech)))
raise ValueError('DPModel should set mech or DPOptimizer configure, please refer to example.')
self._mech = mech
super(DPModel, self).__init__(**kwargs)
def _amp_build_train_network(self, network, optimizer, loss_fn=None, level='O0', **kwargs):
......@@ -179,14 +181,14 @@ class DPModel(Model):
scale_update_cell=update_cell,
micro_batches=self._micro_batches,
l2_norm_clip=self._norm_clip,
mech=self._dp_mech).set_train()
mech=self._mech).set_train()
return network
network = _TrainOneStepCell(network,
optimizer,
loss_scale,
micro_batches=self._micro_batches,
l2_norm_clip=self._norm_clip,
mech=self._dp_mech).set_train()
mech=self._mech).set_train()
return network
def _build_train_network(self):
......@@ -244,6 +246,7 @@ class _ClipGradients(nn.Cell):
Outputs:
tuple[Tensor], clipped gradients.
"""
def __init__(self):
super(_ClipGradients, self).__init__()
self.clip_by_norm = nn.ClipByNorm()
......@@ -253,7 +256,8 @@ class _ClipGradients(nn.Cell):
"""
construct a compute flow.
"""
if clip_type not in (0, 1):
# pylint: disable=consider-using-in
if clip_type != 0 and clip_type != 1:
return grads
new_grads = ()
......@@ -268,6 +272,18 @@ class _ClipGradients(nn.Cell):
return new_grads
class _TupleAdd(nn.Cell):
def __init__(self):
super(_TupleAdd, self).__init__()
self.add = P.TensorAdd()
self.hyper_map = C.HyperMap()
def construct(self, input1, input2):
"""Add two tuple of data."""
out = self.hyper_map(self.add, input1, input2)
return out
class _TrainOneStepWithLossScaleCell(Cell):
r"""
Network training with loss scaling.
......@@ -347,6 +363,9 @@ class _TrainOneStepWithLossScaleCell(Cell):
self._split = P.Split(0, self._micro_batches)
self._clip_by_global_norm = _ClipGradients()
self._mech = mech
self._tuple_add = _TupleAdd()
self._hyper_map = C.HyperMap()
self._micro_float = Tensor(micro_batches, mstype.float32)
def construct(self, data, label, sens=None):
"""
......@@ -368,32 +387,28 @@ class _TrainOneStepWithLossScaleCell(Cell):
weights = self.weights
record_datas = self._split(data)
record_labels = self._split(label)
grads = ()
# first index
loss = self.network(record_datas[0], record_labels[0])
scaling_sens_filled = C.ones_like(loss)*F.cast(scaling_sens, F.dtype(loss))
record_grad = self.grad(self.network, weights)(record_datas[0], record_labels[0], scaling_sens_filled)
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE, self._l2_norm)
grad_sum = list(record_grad)
grad_len = len(record_grad)
for i in range(grad_len):
grad_sum[i] = grad_sum[i].asnumpy()
grads = record_grad
total_loss = loss
for i in range(1, self._micro_batches):
loss = self.network(record_datas[i], record_labels[i])
scaling_sens_filled = C.ones_like(loss)*F.cast(scaling_sens, F.dtype(loss))
record_grad = self.grad(self.network, weights)(record_datas[i], record_labels[i], scaling_sens_filled)
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE, self._l2_norm)
for j in range(grad_len):
grad_sum[j] = grad_sum[j] + record_grad[j].asnumpy()
grads = self._tuple_add(grads, record_grad)
total_loss = P.TensorAdd()(total_loss, loss)
loss = P.Div()(total_loss, self._micro_float)
for i in range(grad_len):
grad_sum[i] = Tensor(grad_sum[i], ms.float32)
grads = tuple(grad_sum)
loss = self.network(data, label)
if self._mech is not None:
grad_noise = self._hyper_map(self._mech, grads)
grads = self._tuple_add(grads, grad_noise)
grads = self._hyper_map(F.partial(_grad_scale, self._micro_float), grads)
grads = self.hyper_map(F.partial(grad_scale, scaling_sens), grads)
grads = self.hyper_map(F.partial(_grad_scale, scaling_sens), grads)
# apply grad reducer on grads
grads = self.grad_reducer(grads)
# get the overflow buffer
......@@ -474,6 +489,9 @@ class _TrainOneStepCell(Cell):
self._split = P.Split(0, self._micro_batches)
self._clip_by_global_norm = _ClipGradients()
self._mech = mech
self._tuple_add = _TupleAdd()
self._hyper_map = C.HyperMap()
self._micro_float = Tensor(micro_batches, mstype.float32)
def construct(self, data, label):
"""
......@@ -486,23 +504,21 @@ class _TrainOneStepCell(Cell):
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
record_grad = self.grad(self.network, weights)(record_datas[0], record_labels[0], sens)
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE, self._l2_norm)
grad_sum = list(record_grad)
grad_len = len(record_grad)
for i in range(grad_len):
grad_sum[i] = grad_sum[i].asnumpy()
grads = record_grad
total_loss = loss
for i in range(1, self._micro_batches):
loss = self.network(record_datas[i], record_labels[i])
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
record_grad = self.grad(self.network, weights)(record_datas[i], record_labels[i], sens)
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE, self._l2_norm)
for j in range(grad_len):
grad_sum[j] = grad_sum[j] + record_grad[j].asnumpy()
for i in range(grad_len):
grad_sum[i] = Tensor(grad_sum[i], ms.float32)
grads = tuple(grad_sum)
loss = self.network(data, label)
grads = self._tuple_add(grads, record_grad)
total_loss = P.TensorAdd()(total_loss, loss)
loss = P.Div()(total_loss, self._micro_float)
if self._mech is not None:
grad_noise = self._hyper_map(self._mech, grads)
grads = self._tuple_add(grads, grad_noise)
grads = self._hyper_map(F.partial(_grad_scale, self._micro_float), grads)
if self.reducer_flag:
# apply grad reducer on grads
......
......@@ -18,7 +18,7 @@ from setuptools import setup
from setuptools.command.egg_info import egg_info
from setuptools.command.build_py import build_py
version = '0.3.0'
version = '0.5.0'
cur_dir = os.path.dirname(os.path.realpath(__file__))
pkg_dir = os.path.join(cur_dir, 'build')
......
......@@ -17,6 +17,8 @@ different Privacy test.
import pytest
from mindspore import context
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindarmour.diff_privacy import GaussianRandom
from mindarmour.diff_privacy import AdaGaussianRandom
from mindarmour.diff_privacy import MechanismsFactory
......@@ -26,13 +28,13 @@ from mindarmour.diff_privacy import MechanismsFactory
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_gaussian():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
shape = (3, 2, 4)
def test_graph_gaussian():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = Tensor([3, 2, 4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
net = GaussianRandom(norm_bound, initial_noise_multiplier)
res = net(shape)
res = net(grad)
print(res)
......@@ -40,42 +42,99 @@ def test_gaussian():
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_ada_gaussian():
def test_pynative_gaussian():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
shape = (3, 2, 4)
grad = Tensor([3, 2, 4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
net = GaussianRandom(norm_bound, initial_noise_multiplier)
res = net(grad)
print(res)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_graph_ada_gaussian():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = Tensor([3, 2, 4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
noise_decay_rate = 0.5
decay_policy = "Step"
alpha = 0.5
decay_policy = 'Step'
net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
noise_decay_rate, decay_policy)
res = net(shape)
noise_decay_rate=alpha, decay_policy=decay_policy)
res = net(grad)
print(res)
def test_factory():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
shape = (3, 2, 4)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_graph_factory():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = Tensor([3, 2, 4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
noise_decay_rate = 0.5
decay_policy = "Step"
alpha = 0.5
decay_policy = 'Step'
noise_mechanism = MechanismsFactory()
noise_construct = noise_mechanism.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_construct(shape)
noise = noise_construct(grad)
print('Gaussian noise: ', noise)
ada_mechanism = MechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
noise_decay_rate,
decay_policy)
ada_noise = ada_noise_construct(shape)
noise_decay_rate=alpha,
decay_policy=decay_policy)
ada_noise = ada_noise_construct(grad)
print('ada noise: ', ada_noise)
if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_pynative_ada_gaussian():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
grad = Tensor([3, 2, 4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
noise_decay_rate=alpha, decay_policy=decay_policy)
res = net(grad)
print(res)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_pynative_factory():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
grad = Tensor([3, 2, 4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
noise_mechanism = MechanismsFactory()
noise_construct = noise_mechanism.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_construct(grad)
print('Gaussian noise: ', noise)
ada_mechanism = MechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
noise_decay_rate=alpha,
decay_policy=decay_policy)
ada_noise = ada_noise_construct(grad)
print('ada noise: ', ada_noise)
......@@ -21,13 +21,15 @@ from mindspore import nn
from mindspore import context
import mindspore.dataset as ds
from mindarmour.diff_privacy import DPOptimizerClassFactory
from mindarmour.diff_privacy import DPModel
from mindarmour.diff_privacy import MechanismsFactory
from mindarmour.diff_privacy import DPOptimizerClassFactory
from test_network import LeNet5
def dataset_generator(batch_size, batches):
"""mock training data."""
data = np.random.random((batches * batch_size, 1, 32, 32)).astype(np.float32)
label = np.random.randint(0, 10, batches * batch_size).astype(np.int32)
for i in range(batches):
......@@ -39,7 +41,7 @@ def dataset_generator(batch_size, batches):
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_model():
def test_dp_model_pynative_mode():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
l2_norm_bound = 1.0
initial_noise_multiplier = 0.01
......@@ -47,21 +49,50 @@ def test_dp_model():
batch_size = 32
batches = 128
epochs = 1
micro_batches = 2
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
factory_opt = DPOptimizerClassFactory(micro_batches=micro_batches)
factory_opt.set_mechanisms('Gaussian',
norm_bound=l2_norm_bound,
initial_noise_multiplier=initial_noise_multiplier)
net_opt = factory_opt.create('Momentum')(network.trainable_params(), learning_rate=0.1, momentum=0.9)
model = DPModel(micro_batches=micro_batches,
norm_clip=l2_norm_bound,
mech=None,
network=network,
loss_fn=loss,
optimizer=net_opt,
metrics=None)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label'])
ms_ds.set_dataset_size(batch_size * batches)
model.train(epochs, ms_ds, dataset_sink_mode=False)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_model_with_graph_mode():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
l2_norm_bound = 1.0
initial_noise_multiplier = 0.01
network = LeNet5()
batch_size = 32
batches = 128
epochs = 1
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
gaussian_mech = DPOptimizerClassFactory(micro_batches=2)
gaussian_mech.set_mechanisms('Gaussian',
mech = MechanismsFactory().create('Gaussian',
norm_bound=l2_norm_bound,
initial_noise_multiplier=initial_noise_multiplier)
net_opt = gaussian_mech.create('SGD')(params=network.trainable_params(),
learning_rate=0.1,
momentum=0.9)
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
model = DPModel(micro_batches=2,
norm_clip=l2_norm_bound,
dp_mech=gaussian_mech.mech,
mech=mech,
network=network,
loss_fn=loss,
optimizer=net_opt,
metrics=None)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label'])
ms_ds.set_dataset_size(batch_size * batches)
model.train(epochs, ms_ds)
model.train(epochs, ms_ds, dataset_sink_mode=False)
......@@ -21,6 +21,7 @@ from mindarmour.diff_privacy import DPOptimizerClassFactory
from test_network import LeNet5
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册