提交 e585e2b0 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!19 Remove redundant code of files under mindarmour/example/mnist_demo/

Merge pull request !19 from jxlang910/master
......@@ -33,7 +33,6 @@ LOGGER.set_level('INFO')
def test_lenet_mnist_coverage():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -85,4 +84,6 @@ def test_lenet_mnist_coverage():
if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_lenet_mnist_coverage()
......@@ -32,7 +32,6 @@ LOGGER.set_level('INFO')
def test_lenet_mnist_fuzzing():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -87,4 +86,6 @@ def test_lenet_mnist_fuzzing():
if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_lenet_mnist_fuzzing()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -36,89 +35,10 @@ LOGGER.set_level('INFO')
TAG = 'CW_Test'
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_carlini_wagner_attack():
"""
CW-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = Model(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
# attacking
num_classes = 10
attack = CarliniWagnerL2Attack(net, num_classes, targeted=False)
start_time = time.clock()
adv_data = attack.batch_generate(np.concatenate(test_images),
np.concatenate(test_labels), batch_size=32)
stop_time = time.clock()
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
accuracy_adv)
test_labels = np.eye(10)[np.concatenate(test_labels)]
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
test_labels, adv_data.transpose(0, 2, 3, 1),
pred_logits_adv)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_carlini_wagner_attack_cpu():
"""
CW-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -188,4 +108,6 @@ def test_carlini_wagner_attack_cpu():
if __name__ == '__main__':
test_carlini_wagner_attack_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_carlini_wagner_attack()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -36,90 +35,10 @@ LOGGER.set_level('INFO')
TAG = 'DeepFool_Test'
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_deepfool_attack():
"""
DeepFool-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = Model(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
# attacking
classes = 10
attack = DeepFool(net, classes, norm_level=2,
bounds=(0.0, 1.0))
start_time = time.clock()
adv_data = attack.batch_generate(np.concatenate(test_images),
np.concatenate(test_labels), batch_size=32)
stop_time = time.clock()
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
accuracy_adv)
test_labels = np.eye(10)[np.concatenate(test_labels)]
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
test_labels, adv_data.transpose(0, 2, 3, 1),
pred_logits_adv)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_deepfool_attack_cpu():
"""
DeepFool-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -190,4 +109,6 @@ def test_deepfool_attack_cpu():
if __name__ == '__main__':
test_deepfool_attack_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_deepfool_attack()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -37,88 +36,10 @@ LOGGER.set_level('INFO')
TAG = 'FGSM_Test'
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_fast_gradient_sign_method():
"""
FGSM-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size, sparse=False)
# prediction accuracy before attack
model = Model(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.argmax(np.concatenate(test_labels), axis=1)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
# attacking
attack = FastGradientSignMethod(net, eps=0.3)
start_time = time.clock()
adv_data = attack.batch_generate(np.concatenate(test_images),
np.concatenate(test_labels), batch_size=32)
stop_time = time.clock()
np.save('./adv_data', adv_data)
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv)
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
np.concatenate(test_labels),
adv_data.transpose(0, 2, 3, 1),
pred_logits_adv)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_fast_gradient_sign_method_cpu():
"""
FGSM-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -188,4 +109,6 @@ def test_fast_gradient_sign_method_cpu():
if __name__ == '__main__':
test_fast_gradient_sign_method_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_fast_gradient_sign_method()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
......@@ -49,96 +48,10 @@ class ModelToBeAttacked(BlackModel):
return result.asnumpy()
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_genetic_attack_on_mnist():
"""
Genetic-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = ModelToBeAttacked(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(images), axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)
# attacking
attack = GeneticAttack(model=model, pop_size=6, mutation_rate=0.05,
per_bounds=0.1, step_size=0.25, temp=0.1,
sparse=True)
targeted_labels = np.random.randint(0, 10, size=len(true_labels))
for i, true_l in enumerate(true_labels):
if targeted_labels[i] == true_l:
targeted_labels[i] = (targeted_labels[i] + 1) % 10
start_time = time.clock()
success_list, adv_data, query_list = attack.generate(
np.concatenate(test_images), targeted_labels)
stop_time = time.clock()
LOGGER.info(TAG, 'success_list: %s', success_list)
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
pred_logits_adv = model.predict(adv_data)
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
accuracy_adv)
test_labels_onehot = np.eye(10)[true_labels]
attack_evaluate = AttackEvaluate(np.concatenate(test_images),
test_labels_onehot, adv_data,
pred_logits_adv, targeted=True,
target_label=targeted_labels)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_genetic_attack_on_mnist_cpu():
"""
Genetic-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -215,4 +128,6 @@ def test_genetic_attack_on_mnist_cpu():
if __name__ == '__main__':
test_genetic_attack_on_mnist_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_genetic_attack_on_mnist()
......@@ -14,7 +14,6 @@
import sys
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
......@@ -68,90 +67,10 @@ def create_target_images(dataset, data_labels, target_labels):
return np.array(res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_hsja_mnist_attack():
"""
hsja-Attack test
"""
context.set_context(mode=context.GRAPH_MODE)
context.set_context(device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
net.set_train(False)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = ModelToBeAttacked(net)
batch_num = 5 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(images), axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s",
accuracy)
test_images = np.concatenate(test_images)
# attacking
norm = 'l2'
search = 'grid_search'
target = False
attack = HopSkipJumpAttack(model, constraint=norm, stepsize_search=search)
if target:
target_labels = random_target_labels(true_labels)
target_images = create_target_images(test_images, predict_labels,
target_labels)
attack.set_target_images(target_images)
success_list, adv_data, _ = attack.generate(test_images, target_labels)
else:
success_list, adv_data, _ = attack.generate(test_images, None)
adv_datas = []
gts = []
for success, adv, gt in zip(success_list, adv_data, true_labels):
if success:
adv_datas.append(adv)
gts.append(gt)
if gts:
adv_datas = np.concatenate(np.asarray(adv_datas), axis=0)
gts = np.asarray(gts)
pred_logits_adv = model.predict(adv_datas)
pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_lables_adv, gts))
mis_rate = (1 - accuracy_adv)*(len(adv_datas) / len(success_list))
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
mis_rate)
def test_hsja_mnist_attack_cpu():
"""
hsja-Attack test
"""
context.set_context(mode=context.GRAPH_MODE)
context.set_context(device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -220,4 +139,6 @@ def test_hsja_mnist_attack_cpu():
if __name__ == '__main__':
test_hsja_mnist_attack_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_hsja_mnist_attack()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -38,94 +37,10 @@ LOGGER.set_level('INFO')
TAG = 'JSMA_Test'
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_jsma_attack():
"""
JSMA-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = Model(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
targeted_labels = np.random.randint(0, 10, size=len(true_labels))
for i, true_l in enumerate(true_labels):
if targeted_labels[i] == true_l:
targeted_labels[i] = (targeted_labels[i] + 1) % 10
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)
# attacking
classes = 10
attack = JSMAAttack(net, classes)
start_time = time.clock()
adv_data = attack.batch_generate(np.concatenate(test_images),
targeted_labels, batch_size=32)
stop_time = time.clock()
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
accuracy_adv)
test_labels = np.eye(10)[np.concatenate(test_labels)]
attack_evaluate = AttackEvaluate(
np.concatenate(test_images).transpose(0, 2, 3, 1),
test_labels, adv_data.transpose(0, 2, 3, 1),
pred_logits_adv, targeted=True, target_label=targeted_labels)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time) / (batch_num*batch_size))
def test_jsma_attack_cpu():
"""
JSMA-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -200,4 +115,6 @@ def test_jsma_attack_cpu():
if __name__ == '__main__':
test_jsma_attack_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_jsma_attack()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -37,102 +36,10 @@ LOGGER.set_level('INFO')
TAG = 'LBFGS_Test'
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_lbfgs_attack():
"""
LBFGS-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size, sparse=False)
# prediction accuracy before attack
model = Model(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.argmax(np.concatenate(test_labels), axis=1)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
# attacking
is_targeted = True
if is_targeted:
targeted_labels = np.random.randint(0, 10, size=len(true_labels)).astype(np.int32)
for i, true_l in enumerate(true_labels):
if targeted_labels[i] == true_l:
targeted_labels[i] = (targeted_labels[i] + 1) % 10
else:
targeted_labels = true_labels.astype(np.int32)
targeted_labels = np.eye(10)[targeted_labels].astype(np.float32)
attack = LBFGS(net, is_targeted=is_targeted)
start_time = time.clock()
adv_data = attack.batch_generate(np.concatenate(test_images),
targeted_labels,
batch_size=batch_size)
stop_time = time.clock()
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
accuracy_adv)
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
np.concatenate(test_labels),
adv_data.transpose(0, 2, 3, 1),
pred_logits_adv,
targeted=is_targeted,
target_label=np.argmax(targeted_labels,
axis=1))
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_lbfgs_attack_cpu():
"""
LBFGS-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -214,4 +121,6 @@ def test_lbfgs_attack_cpu():
if __name__ == '__main__':
test_lbfgs_attack_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_lbfgs_attack()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -37,83 +36,8 @@ LOGGER = LogUtil.get_instance()
TAG = 'M_DI2_FGSM_Test'
LOGGER.set_level('INFO')
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_momentum_diverse_input_iterative_method():
"""
M-DI2-FGSM Attack Test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size, sparse=False)
# prediction accuracy before attack
model = Model(net)
batch_num = 32 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.argmax(np.concatenate(test_labels), axis=1)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
# attacking
attack = MomentumDiverseInputIterativeMethod(net)
start_time = time.clock()
adv_data = attack.batch_generate(np.concatenate(test_images),
np.concatenate(test_labels), batch_size=32)
stop_time = time.clock()
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv)
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
np.concatenate(test_labels),
adv_data.transpose(0, 2, 3, 1),
pred_logits_adv)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_momentum_diverse_input_iterative_method_cpu():
def test_momentum_diverse_input_iterative_method():
"""
M-DI2-FGSM Attack Test for CPU device.
"""
......@@ -186,4 +110,6 @@ def test_momentum_diverse_input_iterative_method_cpu():
if __name__ == '__main__':
test_momentum_diverse_input_iterative_method_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_momentum_diverse_input_iterative_method()
......@@ -14,7 +14,6 @@
import sys
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
......@@ -78,98 +77,10 @@ def create_target_images(dataset, data_labels, target_labels):
return np.array(res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_nes_mnist_attack():
"""
hsja-Attack test
"""
context.set_context(mode=context.GRAPH_MODE)
context.set_context(device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
net.set_train(False)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = ModelToBeAttacked(net)
# the number of batches of attacking samples
batch_num = 5
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(images), axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s",
accuracy)
test_images = np.concatenate(test_images)
# attacking
scene = 'Query_Limit'
if scene == 'Query_Limit':
top_k = -1
elif scene == 'Partial_Info':
top_k = 5
elif scene == 'Label_Only':
top_k = 5
success = 0
queries_num = 0
nes_instance = NES(model, scene, top_k=top_k)
test_length = 32
advs = []
for img_index in range(test_length):
# Initial image and class selection
initial_img = test_images[img_index]
orig_class = true_labels[img_index]
initial_img = [initial_img]
target_class = random_target_labels([orig_class], true_labels)
target_image = create_target_images(test_images, true_labels,
target_class)
nes_instance.set_target_images(target_image)
tag, adv, queries = nes_instance.generate(initial_img, target_class)
if tag[0]:
success += 1
queries_num += queries[0]
advs.append(adv)
advs = np.reshape(advs, (len(advs), 1, 32, 32))
adv_pred = np.argmax(model.predict(advs), axis=1)
adv_accuracy = np.mean(np.equal(adv_pred, true_labels[:test_length]))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
adv_accuracy)
def test_nes_mnist_attack_cpu():
"""
hsja-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE)
context.set_context(device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -246,4 +157,6 @@ def test_nes_mnist_attack_cpu():
if __name__ == '__main__':
test_nes_mnist_attack_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_nes_mnist_attack()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -37,88 +36,10 @@ LOGGER.set_level('INFO')
TAG = 'PGD_Test'
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_projected_gradient_descent_method():
"""
PGD-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size, sparse=False)
# prediction accuracy before attack
model = Model(net)
batch_num = 32 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.argmax(np.concatenate(test_labels), axis=1)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
# attacking
attack = ProjectedGradientDescent(net, eps=0.3)
start_time = time.clock()
adv_data = attack.batch_generate(np.concatenate(test_images),
np.concatenate(test_labels), batch_size=32)
stop_time = time.clock()
np.save('./adv_data', adv_data)
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv)
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
np.concatenate(test_labels),
adv_data.transpose(0, 2, 3, 1),
pred_logits_adv)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_projected_gradient_descent_method_cpu():
"""
PGD-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -188,4 +109,6 @@ def test_projected_gradient_descent_method_cpu():
if __name__ == '__main__':
test_projected_gradient_descent_method_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_projected_gradient_descent_method()
......@@ -14,7 +14,6 @@
import sys
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
......@@ -49,94 +48,10 @@ class ModelToBeAttacked(BlackModel):
return result.asnumpy()
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_pointwise_attack_on_mnist():
"""
Salt-and-Pepper-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = ModelToBeAttacked(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(images), axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)
# attacking
is_target = False
attack = PointWiseAttack(model=model, is_targeted=is_target)
if is_target:
targeted_labels = np.random.randint(0, 10, size=len(true_labels))
for i, true_l in enumerate(true_labels):
if targeted_labels[i] == true_l:
targeted_labels[i] = (targeted_labels[i] + 1) % 10
else:
targeted_labels = true_labels
success_list, adv_data, query_list = attack.generate(
np.concatenate(test_images), targeted_labels)
success_list = np.arange(success_list.shape[0])[success_list]
LOGGER.info(TAG, 'success_list: %s', success_list)
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
adv_preds = []
for ite_data in adv_data:
pred_logits_adv = model.predict(ite_data)
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
adv_preds.extend(pred_logits_adv)
accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
accuracy_adv)
test_labels_onehot = np.eye(10)[true_labels]
attack_evaluate = AttackEvaluate(np.concatenate(test_images),
test_labels_onehot, adv_data,
adv_preds, targeted=is_target,
target_label=targeted_labels)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
def test_pointwise_attack_on_mnist_cpu():
"""
Salt-and-Pepper-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -211,4 +126,6 @@ def test_pointwise_attack_on_mnist_cpu():
if __name__ == '__main__':
test_pointwise_attack_on_mnist_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_pointwise_attack_on_mnist()
......@@ -15,7 +15,6 @@ import sys
import time
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
......@@ -49,89 +48,10 @@ class ModelToBeAttacked(BlackModel):
return result.asnumpy()
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_pso_attack_on_mnist():
"""
PSO-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = ModelToBeAttacked(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(images), axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
# attacking
attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, sparse=True)
start_time = time.clock()
success_list, adv_data, query_list = attack.generate(
np.concatenate(test_images), np.concatenate(test_labels))
stop_time = time.clock()
LOGGER.info(TAG, 'success_list: %s', success_list)
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
pred_logits_adv = model.predict(adv_data)
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
accuracy_adv)
test_labels_onehot = np.eye(10)[np.concatenate(test_labels)]
attack_evaluate = AttackEvaluate(np.concatenate(test_images),
test_labels_onehot, adv_data,
pred_logits_adv)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
LOGGER.info(TAG, 'The average structural similarity between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_ssim())
LOGGER.info(TAG, 'The average costing time is %s',
(stop_time - start_time)/(batch_num*batch_size))
def test_pso_attack_on_mnist_cpu():
"""
PSO-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -201,4 +121,6 @@ def test_pso_attack_on_mnist_cpu():
if __name__ == '__main__':
test_pso_attack_on_mnist_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_pso_attack_on_mnist()
......@@ -14,7 +14,6 @@
import sys
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
......@@ -49,98 +48,10 @@ class ModelToBeAttacked(BlackModel):
return result.asnumpy()
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_salt_and_pepper_attack_on_mnist():
"""
Salt-and-Pepper-Attack test
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size=batch_size)
# prediction accuracy before attack
model = ModelToBeAttacked(net)
batch_num = 3 # the number of batches of attacking samples
test_images = []
test_labels = []
predict_labels = []
i = 0
for data in ds.create_tuple_iterator():
i += 1
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
pred_labels = np.argmax(model.predict(images), axis=1)
predict_labels.append(pred_labels)
if i >= batch_num:
break
LOGGER.debug(TAG, 'model input image shape is: {}'.format(np.array(test_images).shape))
predict_labels = np.concatenate(predict_labels)
true_labels = np.concatenate(test_labels)
accuracy = np.mean(np.equal(predict_labels, true_labels))
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)
# attacking
is_target = False
attack = SaltAndPepperNoiseAttack(model=model,
is_targeted=is_target,
sparse=True)
if is_target:
targeted_labels = np.random.randint(0, 10, size=len(true_labels))
for i, true_l in enumerate(true_labels):
if targeted_labels[i] == true_l:
targeted_labels[i] = (targeted_labels[i] + 1) % 10
else:
targeted_labels = true_labels
LOGGER.debug(TAG, 'input shape is: {}'.format(np.concatenate(test_images).shape))
success_list, adv_data, query_list = attack.generate(
np.concatenate(test_images), targeted_labels)
success_list = np.arange(success_list.shape[0])[success_list]
LOGGER.info(TAG, 'success_list: %s', success_list)
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
adv_preds = []
for ite_data in adv_data:
pred_logits_adv = model.predict(ite_data)
# rescale predict confidences into (0, 1).
pred_logits_adv = softmax(pred_logits_adv, axis=1)
adv_preds.extend(pred_logits_adv)
accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels))
LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
accuracy_adv)
test_labels_onehot = np.eye(10)[true_labels]
attack_evaluate = AttackEvaluate(np.concatenate(test_images),
test_labels_onehot, adv_data,
adv_preds, targeted=is_target,
target_label=targeted_labels)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
attack_evaluate.avg_conf_adv_class())
LOGGER.info(TAG, 'The average confidence of true class is : %s',
attack_evaluate.avg_conf_true_class())
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s',
attack_evaluate.avg_lp_distance())
def test_salt_and_pepper_attack_on_mnist_cpu():
"""
Salt-and-Pepper-Attack test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# upload trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -219,4 +130,6 @@ def test_salt_and_pepper_attack_on_mnist_cpu():
if __name__ == '__main__':
test_salt_and_pepper_attack_on_mnist_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_salt_and_pepper_attack_on_mnist()
......@@ -12,11 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""defense example using nad"""
import logging
import sys
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore import nn
......@@ -36,111 +34,10 @@ LOGGER = LogUtil.get_instance()
TAG = 'Nad_Example'
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_nad_method():
"""
NAD-Defense test.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# 1. load trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_name)
load_param_into_net(net, load_dict)
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
opt = nn.Momentum(net.trainable_params(), 0.01, 0.09)
nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt,
bounds=(0.0, 1.0), eps=0.3)
# 2. get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds_test = generate_mnist_dataset(data_list, batch_size=batch_size,
sparse=False)
inputs = []
labels = []
for data in ds_test.create_tuple_iterator():
inputs.append(data[0].astype(np.float32))
labels.append(data[1])
inputs = np.concatenate(inputs)
labels = np.concatenate(labels)
# 3. get accuracy of test data on original model
net.set_train(False)
acc_list = []
batchs = inputs.shape[0] // batch_size
for i in range(batchs):
batch_inputs = inputs[i*batch_size : (i + 1)*batch_size]
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
logits = net(Tensor(batch_inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc_list.append(np.mean(batch_labels == label_pred))
LOGGER.debug(TAG, 'accuracy of TEST data on original model is : %s',
np.mean(acc_list))
# 4. get adv of test data
attack = FastGradientSignMethod(net, eps=0.3)
adv_data = attack.batch_generate(inputs, labels)
LOGGER.debug(TAG, 'adv_data.shape is : %s', adv_data.shape)
# 5. get accuracy of adv data on original model
net.set_train(False)
acc_list = []
batchs = adv_data.shape[0] // batch_size
for i in range(batchs):
batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size]
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
logits = net(Tensor(batch_inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc_list.append(np.mean(batch_labels == label_pred))
LOGGER.debug(TAG, 'accuracy of adv data on original model is : %s',
np.mean(acc_list))
# 6. defense
net.set_train()
nad.batch_defense(inputs, labels, batch_size=32, epochs=10)
# 7. get accuracy of test data on defensed model
net.set_train(False)
acc_list = []
batchs = inputs.shape[0] // batch_size
for i in range(batchs):
batch_inputs = inputs[i*batch_size : (i + 1)*batch_size]
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
logits = net(Tensor(batch_inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc_list.append(np.mean(batch_labels == label_pred))
LOGGER.debug(TAG, 'accuracy of TEST data on defensed model is : %s',
np.mean(acc_list))
# 8. get accuracy of adv data on defensed model
acc_list = []
batchs = adv_data.shape[0] // batch_size
for i in range(batchs):
batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size]
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1)
logits = net(Tensor(batch_inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc_list.append(np.mean(batch_labels == label_pred))
LOGGER.debug(TAG, 'accuracy of adv data on defensed model is : %s',
np.mean(acc_list))
def test_nad_method_cpu():
"""
NAD-Defense test for CPU device.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# 1. load trained network
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
......@@ -231,5 +128,6 @@ def test_nad_method_cpu():
if __name__ == '__main__':
LOGGER.set_level(logging.DEBUG)
test_nad_method_cpu()
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_nad_method()
......@@ -40,7 +40,6 @@ from mindarmour.utils.logger import LogUtil
sys.path.append("..")
from data_processing import generate_mnist_dataset
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
LOGGER = LogUtil.get_instance()
TAG = 'Defense_Evaluate_Example'
......@@ -140,20 +139,18 @@ def test_black_defense():
# get test data
data_list = "./MNIST_unzip/test"
batch_size = 32
ds_test = generate_mnist_dataset(data_list, batch_size=batch_size,
sparse=False)
ds_test = generate_mnist_dataset(data_list, batch_size=batch_size)
inputs = []
labels = []
for data in ds_test.create_tuple_iterator():
inputs.append(data[0].astype(np.float32))
labels.append(data[1])
inputs = np.concatenate(inputs).astype(np.float32)
labels = np.concatenate(labels).astype(np.float32)
labels_sparse = np.argmax(labels, axis=1)
labels = np.concatenate(labels).astype(np.int32)
target_label = np.random.randint(0, 10, size=labels_sparse.shape[0])
for idx in range(labels_sparse.shape[0]):
while target_label[idx] == labels_sparse[idx]:
target_label = np.random.randint(0, 10, size=labels.shape[0])
for idx in range(labels.shape[0]):
while target_label[idx] == labels[idx]:
target_label[idx] = np.random.randint(0, 10)
target_label = np.eye(10)[target_label].astype(np.float32)
......@@ -167,23 +164,23 @@ def test_black_defense():
wb_model = ModelToBeAttacked(wb_net)
# gen white-box adversarial examples of test data
wb_attack = FastGradientSignMethod(wb_net, eps=0.3)
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
wb_attack = FastGradientSignMethod(wb_net, eps=0.3, loss_fn=loss)
wb_adv_sample = wb_attack.generate(attacked_sample,
attacked_true_label)
wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1)
accuracy_test = np.mean(
np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1),
np.argmax(attacked_true_label, axis=1)))
attacked_true_label))
LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s",
accuracy_test)
accuracy_adv = np.mean(np.equal(np.argmax(wb_raw_preds, axis=1),
np.argmax(attacked_true_label, axis=1)))
attacked_true_label))
LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s",
accuracy_adv)
# improve the robustness of model with white-box adversarial examples
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09)
nad = NaturalAdversarialDefense(wb_net, loss_fn=loss, optimizer=opt,
......@@ -194,12 +191,12 @@ def test_black_defense():
wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy()
wb_def_preds = softmax(wb_def_preds, axis=1)
accuracy_def = np.mean(np.equal(np.argmax(wb_def_preds, axis=1),
np.argmax(attacked_true_label, axis=1)))
attacked_true_label))
LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def)
# calculate defense evaluation metrics for defense against white-box attack
wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds,
np.argmax(attacked_true_label, axis=1))
attacked_true_label)
LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack')
LOGGER.info(TAG,
'classification accuracy variance (CAV) is : {:.2f}'.format(
......@@ -232,7 +229,7 @@ def test_black_defense():
per_bounds=0.1, step_size=0.25, temp=0.1,
sparse=False)
attack_target_label = target_label[:attacked_size]
true_label = labels_sparse[:attacked_size + benign_size]
true_label = labels[:attacked_size + benign_size]
# evaluate robustness of original model
# gen black-box adversarial examples of test data
for idx in range(attacked_size):
......@@ -323,4 +320,8 @@ def test_black_defense():
if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
DEVICE = context.get_context("device_target")
if DEVICE in ("Ascend", "GPU"):
test_black_defense()
......@@ -14,7 +14,6 @@
import sys
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
......@@ -29,7 +28,6 @@ from mindarmour.attacks.black.pso_attack import PSOAttack
from mindarmour.detectors.black.similarity_detector import SimilarityDetector
from mindarmour.utils.logger import LogUtil
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
sys.path.append("..")
from data_processing import generate_mnist_dataset
......@@ -92,11 +90,6 @@ class EncoderNet(Cell):
return self._encode_dim
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_similarity_detector():
"""
Similarity Detector test.
......@@ -178,4 +171,8 @@ def test_similarity_detector():
if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
DEVICE = context.get_context("device_target")
if DEVICE in ("Ascend", "GPU"):
test_similarity_detector()
......@@ -31,12 +31,6 @@ TAG = "Lenet5_train"
def mnist_train(epoch_size, batch_size, lr, momentum):
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
enable_mem_reuse=False)
lr = lr
momentum = momentum
epoch_size = epoch_size
mnist_path = "./MNIST_unzip/"
ds = generate_mnist_dataset(os.path.join(mnist_path, "train"),
batch_size=batch_size, repeat_size=1)
......@@ -67,4 +61,6 @@ def mnist_train(epoch_size, batch_size, lr, momentum):
if __name__ == '__main__':
context.set_context(mode=context.GRAPH_MODE, device_target="CPU",
enable_mem_reuse=False)
mnist_train(10, 32, 0.01, 0.9)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册