From a4a2f5d2f6b71811428672a0e7adc59cca26e322 Mon Sep 17 00:00:00 2001 From: jin-xiulang Date: Sat, 22 Aug 2020 15:08:08 +0800 Subject: [PATCH] Fix Three issues. Fix Three issues. --- mindarmour/fuzzing/fuzzing.py | 29 ++++++++++++++++---- mindarmour/fuzzing/model_coverage_metrics.py | 9 ++++-- 2 files changed, 30 insertions(+), 8 deletions(-) diff --git a/mindarmour/fuzzing/fuzzing.py b/mindarmour/fuzzing/fuzzing.py index 75e02ac..2b8eb23 100644 --- a/mindarmour/fuzzing/fuzzing.py +++ b/mindarmour/fuzzing/fuzzing.py @@ -22,7 +22,8 @@ from mindspore import Tensor from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics from mindarmour.utils._check_param import check_model, check_numpy_param, \ - check_param_multi_types, check_norm_level, check_param_in_range + check_param_multi_types, check_norm_level, check_param_in_range, \ + check_param_type, check_int_positive from mindarmour.fuzzing.image_transform import Contrast, Brightness, Blur, \ Noise, Translate, Scale, Shear, Rotate from mindarmour.attacks import FastGradientSignMethod, \ @@ -185,7 +186,6 @@ class Fuzzer: ValueError: If metric in list `eval_metrics` is not in ['accuracy', 'attack_success_rate', 'kmnc', 'nbc', 'snac']. """ - eval_metrics_ = None if isinstance(eval_metrics, (list, tuple)): eval_metrics_ = [] avaliable_metrics = ['accuracy', 'attack_success_rate', 'kmnc', 'nbc', 'snac'] @@ -215,7 +215,26 @@ class Fuzzer: raise TypeError(msg) # Check whether the mutate_config meet the specification. + mutate_config = check_param_type('mutate_config', mutate_config, list) + for method in mutate_config: + check_param_type("method['params']", method['params'], dict) + if coverage_metric not in ['KMNC', 'NBC', 'SNAC']: + msg = "coverage_metric must be in ['KMNC', 'NBC', 'SNAC'], but got {}." \ + .format(coverage_metric) + LOGGER.error(TAG, msg) + raise ValueError(msg) + max_iters = check_int_positive('max_iters', max_iters) + mutate_num_per_seed = check_int_positive('mutate_num_per_seed', mutate_num_per_seed) mutates = self._init_mutates(mutate_config) + initial_seeds = check_param_type('initial_seeds', initial_seeds, list) + for seed in initial_seeds: + check_param_type('seed', seed, list) + check_numpy_param('seed[0]', seed[0]) + check_numpy_param('seed[1]', seed[1]) + if seed[2] != 0: + msg = "initial seed[2] must be 0, but got {}.".format(seed[2]) + LOGGER.error(TAG, msg) + raise ValueError(msg) seed, initial_seeds = _select_next(initial_seeds) fuzz_samples = [] gt_labels = [] @@ -260,7 +279,7 @@ class Fuzzer: for index in range(len(samples)): mutate = samples[:index + 1] self._coverage_metrics.calculate_coverage(mutate.astype(np.float32)) - if coverage_metric == "KMNC": + if coverage_metric == 'KMNC': coverages.append(self._coverage_metrics.get_kmnc()) if coverage_metric == 'NBC': coverages.append(self._coverage_metrics.get_nbc()) @@ -369,11 +388,11 @@ class Fuzzer: dict, evaluate metrics include accuarcy, attack success rate and neural coverage. """ + gt_labels = np.asarray(gt_labels) + fuzz_preds = np.asarray(fuzz_preds) temp = np.argmax(gt_labels, axis=1) == np.argmax(fuzz_preds, axis=1) metrics_report = {} if metrics == 'auto' or 'accuracy' in metrics: - gt_labels = np.asarray(gt_labels) - fuzz_preds = np.asarray(fuzz_preds) acc = np.sum(temp) / np.size(temp) metrics_report['Accuracy'] = acc diff --git a/mindarmour/fuzzing/model_coverage_metrics.py b/mindarmour/fuzzing/model_coverage_metrics.py index cc4c7a9..1dbd621 100644 --- a/mindarmour/fuzzing/model_coverage_metrics.py +++ b/mindarmour/fuzzing/model_coverage_metrics.py @@ -21,7 +21,7 @@ from mindspore import Tensor from mindspore import Model from mindarmour.utils._check_param import check_model, check_numpy_param, \ - check_int_positive + check_int_positive, check_param_multi_types from mindarmour.utils.logger import LogUtil LOGGER = LogUtil.get_instance() @@ -52,8 +52,9 @@ class ModelCoverageMetrics: ValueError: If neuron_num is too big (for example, bigger than 1e+9). Examples: - >>> train_images = np.random.random((10000, 128)).astype(np.float32) - >>> test_images = np.random.random((5000, 128)).astype(np.float32) + >>> net = LeNet5() + >>> train_images = np.random.random((10000, 1, 32, 32)).astype(np.float32) + >>> test_images = np.random.random((5000, 1, 32, 32)).astype(np.float32) >>> model = Model(net) >>> model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images) >>> model_fuzz_test.calculate_coverage(test_images) @@ -148,8 +149,10 @@ class ModelCoverageMetrics: >>> model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images) >>> model_fuzz_test.calculate_coverage(test_images) """ + dataset = check_numpy_param('dataset', dataset) batch_size = check_int_positive('batch_size', batch_size) + bias_coefficient = check_param_multi_types('bias_coefficient', bias_coefficient, [int, float]) self._lower_bounds -= bias_coefficient*self._var self._upper_bounds += bias_coefficient*self._var intervals = (self._upper_bounds - self._lower_bounds) / self._segmented_num -- GitLab