diff --git a/mindarmour/attacks/gradient_method.py b/mindarmour/attacks/gradient_method.py index 936eaa202433fc0e3ed0ff27561624ee8982e3d9..da01df6ae2223f60b9c54b173329ad1729db1c88 100644 --- a/mindarmour/attacks/gradient_method.py +++ b/mindarmour/attacks/gradient_method.py @@ -47,6 +47,12 @@ class GradientMethod(Attack): bounds (tuple): Upper and lower bounds of data, indicating the data range. In form of (clip_min, clip_max). Default: None. loss_fn (Loss): Loss function for optimization. Default: None. + + Examples: + >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) + >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) + >>> attack = FastGradientMethod(network) + >>> adv_x = attack.generate(inputs, labels) """ def __init__(self, network, eps=0.07, alpha=None, bounds=None, @@ -84,11 +90,6 @@ class GradientMethod(Attack): Returns: numpy.ndarray, generated adversarial examples. - - Examples: - >>> adv_x = attack.generate([[0.1, 0.2, 0.6], [0.3, 0, 0.4]], - >>> [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],[0, , 0, 1, 0, 0, 0, 0, 0, 0, - >>> 0]]) """ inputs, labels = check_pair_numpy_param('inputs', inputs, 'labels', labels) @@ -154,7 +155,10 @@ class FastGradientMethod(GradientMethod): loss_fn (Loss): Loss function for optimization. Default: None. Examples: + >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) + >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) >>> attack = FastGradientMethod(network) + >>> adv_x = attack.generate(inputs, labels) """ def __init__(self, network, eps=0.07, alpha=None, bounds=(0.0, 1.0), @@ -178,10 +182,6 @@ class FastGradientMethod(GradientMethod): Returns: numpy.ndarray, gradient of inputs. - - Examples: - >>> grad = self._gradient([[0.2, 0.3, 0.4]], - >>> [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) """ out_grad = self._grad_all(Tensor(inputs), Tensor(labels)) if isinstance(out_grad, tuple): @@ -219,7 +219,10 @@ class RandomFastGradientMethod(FastGradientMethod): ValueError: eps is smaller than alpha! Examples: + >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) + >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) >>> attack = RandomFastGradientMethod(network) + >>> adv_x = attack.generate(inputs, labels) """ def __init__(self, network, eps=0.07, alpha=0.035, bounds=(0.0, 1.0), @@ -257,7 +260,10 @@ class FastGradientSignMethod(GradientMethod): loss_fn (Loss): Loss function for optimization. Default: None. Examples: + >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) + >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) >>> attack = FastGradientSignMethod(network) + >>> adv_x = attack.generate(inputs, labels) """ def __init__(self, network, eps=0.07, alpha=None, bounds=(0.0, 1.0), @@ -280,10 +286,6 @@ class FastGradientSignMethod(GradientMethod): Returns: numpy.ndarray, gradient of inputs. - - Examples: - >>> grad = self._gradient([[0.2, 0.3, 0.4]], - >>> [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) """ out_grad = self._grad_all(Tensor(inputs), Tensor(labels)) if isinstance(out_grad, tuple): @@ -318,7 +320,10 @@ class RandomFastGradientSignMethod(FastGradientSignMethod): ValueError: eps is smaller than alpha! Examples: + >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) + >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) >>> attack = RandomFastGradientSignMethod(network) + >>> adv_x = attack.generate(inputs, labels) """ def __init__(self, network, eps=0.07, alpha=0.035, bounds=(0.0, 1.0), @@ -351,7 +356,10 @@ class LeastLikelyClassMethod(FastGradientSignMethod): loss_fn (Loss): Loss function for optimization. Default: None. Examples: + >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) + >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) >>> attack = LeastLikelyClassMethod(network) + >>> adv_x = attack.generate(inputs, labels) """ def __init__(self, network, eps=0.07, alpha=None, bounds=(0.0, 1.0), @@ -385,7 +393,10 @@ class RandomLeastLikelyClassMethod(FastGradientSignMethod): ValueError: eps is smaller than alpha! Examples: + >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) + >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) >>> attack = RandomLeastLikelyClassMethod(network) + >>> adv_x = attack.generate(inputs, labels) """ def __init__(self, network, eps=0.07, alpha=0.035, bounds=(0.0, 1.0), diff --git a/mindarmour/detectors/mag_net.py b/mindarmour/detectors/mag_net.py index 27abec6ea3b44b3be74f74d6431b8cabae1c16e4..fdf307322912150f113d2b347996e4c57400e4ca 100644 --- a/mindarmour/detectors/mag_net.py +++ b/mindarmour/detectors/mag_net.py @@ -47,6 +47,16 @@ class ErrorBasedDetector(Detector): Default: 0.01. bounds (tuple): (clip_min, clip_max). Default: (0.0, 1.0). + Examples: + >>> np.random.seed(5) + >>> ori = np.random.rand(4, 4, 4).astype(np.float32) + >>> np.random.seed(6) + >>> adv = np.random.rand(4, 4, 4).astype(np.float32) + >>> model = Model(Net()) + >>> detector = ErrorBasedDetector(model) + >>> detector.fit(ori) + >>> detected_res = detector.detect(adv) + >>> adv_trans = detector.transform(adv) """ def __init__(self, auto_encoder, false_positive_rate=0.01, @@ -159,6 +169,19 @@ class DivergenceBasedDetector(ErrorBasedDetector): t (int): Temperature used to overcome numerical problem. Default: 1. bounds (tuple): Upper and lower bounds of data. In form of (clip_min, clip_max). Default: (0.0, 1.0). + + Examples: + >>> np.random.seed(5) + >>> ori = np.random.rand(4, 4, 4).astype(np.float32) + >>> np.random.seed(6) + >>> adv = np.random.rand(4, 4, 4).astype(np.float32) + >>> encoder = Model(Net()) + >>> model = Model(PredNet()) + >>> detector = DivergenceBasedDetector(encoder, model) + >>> threshold = detector.fit(ori) + >>> detector.set_threshold(threshold) + >>> detected_res = detector.detect(adv) + >>> adv_trans = detector.transform(adv) """ def __init__(self, auto_encoder, model, option="jsd", diff --git a/mindarmour/fuzzing/model_coverage_metrics.py b/mindarmour/fuzzing/model_coverage_metrics.py index 22ce4b1c9c9a647be92c457f69f50bdc838b5c87..95f2de150f244e0856e574fddf8dad577f61b35c 100644 --- a/mindarmour/fuzzing/model_coverage_metrics.py +++ b/mindarmour/fuzzing/model_coverage_metrics.py @@ -37,6 +37,16 @@ class ModelCoverageMetrics: n (int): The number of testing neurons. train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. + + Examples: + >>> train_images = np.random.random((10000, 128)).astype(np.float32) + >>> test_images = np.random.random((5000, 128)).astype(np.float32) + >>> model = Model(net) + >>> model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images) + >>> model_fuzz_test.test_adequacy_coverage_calculate(test_images) + >>> print('KMNC of this test is : %s', model_fuzz_test.get_kmnc()) + >>> print('NBC of this test is : %s', model_fuzz_test.get_nbc()) + >>> print('SNAC of this test is : %s', model_fuzz_test.get_snac()) """ def __init__(self, model, k, n, train_dataset): @@ -163,7 +173,7 @@ class ModelCoverageMetrics: Get the metric of 'strong neuron activation coverage'. Returns: - float: the metric of 'strong neuron activation coverage'. + float, the metric of 'strong neuron activation coverage'. Examples: >>> model_fuzz_test.get_snac() diff --git a/mindarmour/utils/util.py b/mindarmour/utils/util.py index 906b32ccbbd1d336c8b2b3089a47fe0a74c6147b..ff5237566b2cf3d960b69b4b7fb1debad57fabe9 100644 --- a/mindarmour/utils/util.py +++ b/mindarmour/utils/util.py @@ -92,6 +92,18 @@ class GradWrapWithLoss(Cell): """ Construct a network to compute the gradient of loss function in input space and weighted by `weight`. + + Args: + network (Cell): The target network to wrap. + + Examples: + >>> data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)*0.01) + >>> label = Tensor(np.ones([1, 10]).astype(np.float32)) + >>> net = NET() + >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits() + >>> loss_net = WithLossCell(net, loss_fn) + >>> grad_all = GradWrapWithLoss(loss_net) + >>> out_grad = grad_all(data, labels) """ def __init__(self, network): @@ -120,6 +132,19 @@ class GradWrap(Cell): """ Construct a network to compute the gradient of network outputs in input space and weighted by `weight`, expressed as a jacobian matrix. + + Args: + network (Cell): The target network to wrap. + + Examples: + >>> data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)*0.01) + >>> label = Tensor(np.ones([1, 10]).astype(np.float32)) + >>> num_classes = 10 + >>> sens = np.zeros((data.shape[0], num_classes)).astype(np.float32) + >>> sens[:, 1] = 1.0 + >>> net = NET() + >>> wrap_net = GradWrap(net) + >>> wrap_net(data, Tensor(sens)) """ def __init__(self, network):