Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
9abd1c91
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9abd1c91
编写于
4月 23, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
4月 23, 2020
浏览文件
操作
浏览文件
下载
差异文件
!12 Develop model-fuzzing evaluation module.
Merge pull request !12 from jxlang910/master
上级
c36bb5bc
a4c4feca
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
387 addition
and
0 deletion
+387
-0
example/mnist_demo/lenet5_mnist_coverage.py
example/mnist_demo/lenet5_mnist_coverage.py
+89
-0
mindarmour/fuzzing/__init__.py
mindarmour/fuzzing/__init__.py
+3
-0
mindarmour/fuzzing/model_coverage_metrics.py
mindarmour/fuzzing/model_coverage_metrics.py
+167
-0
tests/ut/python/fuzzing/test_coverage_metrics.py
tests/ut/python/fuzzing/test_coverage_metrics.py
+128
-0
未找到文件。
example/mnist_demo/lenet5_mnist_coverage.py
0 → 100644
浏览文件 @
9abd1c91
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
numpy
as
np
from
mindspore
import
Model
from
mindspore
import
context
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
mindarmour.attacks.gradient_method
import
FastGradientSignMethod
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.fuzzing.model_coverage_metrics
import
ModelCoverageMetrics
from
lenet5_net
import
LeNet5
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
TAG
=
'Neuron coverage test'
LOGGER
.
set_level
(
'INFO'
)
def
test_lenet_mnist_coverage
():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
model
=
Model
(
net
)
# get training data
data_list
=
"./MNIST_unzip/train"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
,
sparse
=
True
)
train_images
=
[]
for
data
in
ds
.
create_tuple_iterator
():
images
=
data
[
0
].
astype
(
np
.
float32
)
train_images
.
append
(
images
)
train_images
=
np
.
concatenate
(
train_images
,
axis
=
0
)
# initialize fuzz test with training dataset
model_fuzz_test
=
ModelCoverageMetrics
(
model
,
10000
,
10
,
train_images
)
# fuzz test with original test data
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
,
sparse
=
True
)
test_images
=
[]
test_labels
=
[]
for
data
in
ds
.
create_tuple_iterator
():
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
test_images
=
np
.
concatenate
(
test_images
,
axis
=
0
)
test_labels
=
np
.
concatenate
(
test_labels
,
axis
=
0
)
model_fuzz_test
.
test_adequacy_coverage_calculate
(
test_images
)
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_fuzz_test
.
get_kmnc
())
LOGGER
.
info
(
TAG
,
'NBC of this test is : %s'
,
model_fuzz_test
.
get_nbc
())
LOGGER
.
info
(
TAG
,
'SNAC of this test is : %s'
,
model_fuzz_test
.
get_snac
())
# generate adv_data
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
adv_data
=
attack
.
batch_generate
(
test_images
,
test_labels
,
batch_size
=
32
)
model_fuzz_test
.
test_adequacy_coverage_calculate
(
adv_data
,
bias_coefficient
=
0.5
)
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_fuzz_test
.
get_kmnc
())
LOGGER
.
info
(
TAG
,
'NBC of this test is : %s'
,
model_fuzz_test
.
get_nbc
())
LOGGER
.
info
(
TAG
,
'SNAC of this test is : %s'
,
model_fuzz_test
.
get_snac
())
if
__name__
==
'__main__'
:
test_lenet_mnist_coverage
()
mindarmour/fuzzing/__init__.py
0 → 100644
浏览文件 @
9abd1c91
from
.model_coverage_metrics
import
ModelCoverageMetrics
__all__
=
[
'ModelCoverageMetrics'
]
\ No newline at end of file
mindarmour/fuzzing/model_coverage_metrics.py
0 → 100644
浏览文件 @
9abd1c91
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model-Test Coverage Metrics.
"""
import
numpy
as
np
from
mindspore
import
Tensor
from
mindspore
import
Model
from
mindarmour.utils._check_param
import
check_model
,
check_numpy_param
,
\
check_int_positive
class
ModelCoverageMetrics
:
"""
Evaluate the testing adequacy of a model fuzz test.
Reference: `DeepGauge: Multi-Granularity Testing Criteria for Deep
Learning Systems <https://arxiv.org/abs/1803.07519>`_
Args:
model (Model): The pre-trained model which waiting for testing.
k (int): The number of segmented sections of neurons' output intervals.
n (int): The number of testing neurons.
train_dataset (numpy.ndarray): Training dataset used for determine
the neurons' output boundaries.
"""
def
__init__
(
self
,
model
,
k
,
n
,
train_dataset
):
self
.
_model
=
check_model
(
'model'
,
model
,
Model
)
self
.
_k
=
k
self
.
_n
=
n
train_dataset
=
check_numpy_param
(
'train_dataset'
,
train_dataset
)
self
.
_lower_bounds
=
[
np
.
inf
]
*
n
self
.
_upper_bounds
=
[
-
np
.
inf
]
*
n
self
.
_var
=
[
0
]
*
n
self
.
_main_section_hits
=
[[
0
for
_
in
range
(
self
.
_k
)]
for
_
in
range
(
self
.
_n
)]
self
.
_lower_corner_hits
=
[
0
]
*
self
.
_n
self
.
_upper_corner_hits
=
[
0
]
*
self
.
_n
self
.
_bounds_get
(
train_dataset
)
def
_bounds_get
(
self
,
train_dataset
,
batch_size
=
32
):
"""
Update the lower and upper boundaries of neurons' outputs.
Args:
train_dataset (numpy.ndarray): Training dataset used for
determine the neurons' output boundaries.
batch_size (int): The number of samples in a predict batch.
Default: 32.
"""
batch_size
=
check_int_positive
(
'batch_size'
,
batch_size
)
output_mat
=
[]
batches
=
train_dataset
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batches
):
inputs
=
train_dataset
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
output
=
self
.
_model
.
predict
(
Tensor
(
inputs
)).
asnumpy
()
output_mat
.
append
(
output
)
lower_compare_array
=
np
.
concatenate
(
[
output
,
np
.
array
([
self
.
_lower_bounds
])],
axis
=
0
)
self
.
_lower_bounds
=
np
.
min
(
lower_compare_array
,
axis
=
0
)
upper_compare_array
=
np
.
concatenate
(
[
output
,
np
.
array
([
self
.
_upper_bounds
])],
axis
=
0
)
self
.
_upper_bounds
=
np
.
max
(
upper_compare_array
,
axis
=
0
)
self
.
_var
=
np
.
std
(
np
.
concatenate
(
np
.
array
(
output_mat
),
axis
=
0
),
axis
=
0
)
def
_sections_hits_count
(
self
,
dataset
,
intervals
):
"""
Update the coverage matrix of neurons' output subsections.
Args:
dataset (numpy.ndarray): Testing data.
intervals (list[float]): Segmentation intervals of neurons'
outputs.
"""
dataset
=
check_numpy_param
(
'dataset'
,
dataset
)
batch_output
=
self
.
_model
.
predict
(
Tensor
(
dataset
)).
asnumpy
()
batch_section_indexes
=
(
batch_output
-
self
.
_lower_bounds
)
//
intervals
for
section_indexes
in
batch_section_indexes
:
for
i
in
range
(
self
.
_n
):
if
section_indexes
[
i
]
<
0
:
self
.
_lower_corner_hits
[
i
]
=
1
elif
section_indexes
[
i
]
>=
self
.
_k
:
self
.
_upper_corner_hits
[
i
]
=
1
else
:
self
.
_main_section_hits
[
i
][
int
(
section_indexes
[
i
])]
=
1
def
test_adequacy_coverage_calculate
(
self
,
dataset
,
bias_coefficient
=
0
,
batch_size
=
32
):
"""
Calculate the testing adequacy of the given dataset.
Args:
dataset (numpy.ndarray): Data for fuzz test.
bias_coefficient (float): The coefficient used for changing the
neurons' output boundaries. Default: 0.
batch_size (int): The number of samples in a predict batch.
Default: 32.
Examples:
>>> model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images)
>>> model_fuzz_test.test_adequacy_coverage_calculate(test_images)
"""
dataset
=
check_numpy_param
(
'dataset'
,
dataset
)
batch_size
=
check_int_positive
(
'batch_size'
,
batch_size
)
self
.
_lower_bounds
-=
bias_coefficient
*
self
.
_var
self
.
_upper_bounds
+=
bias_coefficient
*
self
.
_var
intervals
=
(
self
.
_upper_bounds
-
self
.
_lower_bounds
)
/
self
.
_k
batches
=
dataset
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batches
):
self
.
_sections_hits_count
(
dataset
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
],
intervals
)
def
get_kmnc
(
self
):
"""
Get the metric of 'k-multisection neuron coverage'.
Returns:
float, the metric of 'k-multisection neuron coverage'.
Examples:
>>> model_fuzz_test.get_kmnc()
"""
kmnc
=
np
.
sum
(
self
.
_main_section_hits
)
/
(
self
.
_n
*
self
.
_k
)
return
kmnc
def
get_nbc
(
self
):
"""
Get the metric of 'neuron boundary coverage'.
Returns:
float, the metric of 'neuron boundary coverage'.
Examples:
>>> model_fuzz_test.get_nbc()
"""
nbc
=
(
np
.
sum
(
self
.
_lower_corner_hits
)
+
np
.
sum
(
self
.
_upper_corner_hits
))
/
(
2
*
self
.
_n
)
return
nbc
def
get_snac
(
self
):
"""
Get the metric of 'strong neuron activation coverage'.
Returns:
float: the metric of 'strong neuron activation coverage'.
Examples:
>>> model_fuzz_test.get_snac()
"""
snac
=
np
.
sum
(
self
.
_upper_corner_hits
)
/
self
.
_n
return
snac
tests/ut/python/fuzzing/test_coverage_metrics.py
0 → 100644
浏览文件 @
9abd1c91
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model-fuzz coverage test.
"""
import
numpy
as
np
import
pytest
from
mindspore.train
import
Model
import
mindspore.nn
as
nn
from
mindspore.nn
import
Cell
from
mindspore
import
context
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
mindarmour.attacks.gradient_method
import
FastGradientSignMethod
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.fuzzing.model_coverage_metrics
import
ModelCoverageMetrics
LOGGER
=
LogUtil
.
get_instance
()
TAG
=
'Neuron coverage test'
LOGGER
.
set_level
(
'INFO'
)
# for user
class
Net
(
Cell
):
"""
Construct the network of target model.
Examples:
>>> net = Net()
"""
def
__init__
(
self
):
"""
Introduce the layers used for network construction.
"""
super
(
Net
,
self
).
__init__
()
self
.
_relu
=
nn
.
ReLU
()
def
construct
(
self
,
inputs
):
"""
Construct network.
Args:
inputs (Tensor): Input data.
"""
out
=
self
.
_relu
(
inputs
)
return
out
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_card
@
pytest
.
mark
.
component_mindarmour
def
test_lenet_mnist_coverage_cpu
():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# load network
net
=
Net
()
model
=
Model
(
net
)
# initialize fuzz test with training dataset
training_data
=
(
np
.
random
.
random
((
10000
,
10
))
*
20
).
astype
(
np
.
float32
)
model_fuzz_test
=
ModelCoverageMetrics
(
model
,
10000
,
10
,
training_data
)
# fuzz test with original test data
# get test data
test_data
=
(
np
.
random
.
random
((
2000
,
10
))
*
20
).
astype
(
np
.
float32
)
test_labels
=
np
.
random
.
randint
(
0
,
10
,
2000
).
astype
(
np
.
int32
)
model_fuzz_test
.
test_adequacy_coverage_calculate
(
test_data
)
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_fuzz_test
.
get_kmnc
())
LOGGER
.
info
(
TAG
,
'NBC of this test is : %s'
,
model_fuzz_test
.
get_nbc
())
LOGGER
.
info
(
TAG
,
'SNAC of this test is : %s'
,
model_fuzz_test
.
get_snac
())
# generate adv_data
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
adv_data
=
attack
.
batch_generate
(
test_data
,
test_labels
,
batch_size
=
32
)
model_fuzz_test
.
test_adequacy_coverage_calculate
(
adv_data
,
bias_coefficient
=
0.5
)
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_fuzz_test
.
get_kmnc
())
LOGGER
.
info
(
TAG
,
'NBC of this test is : %s'
,
model_fuzz_test
.
get_nbc
())
LOGGER
.
info
(
TAG
,
'SNAC of this test is : %s'
,
model_fuzz_test
.
get_snac
())
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
env_card
@
pytest
.
mark
.
component_mindarmour
def
test_lenet_mnist_coverage_ascend
():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# load network
net
=
Net
()
model
=
Model
(
net
)
# initialize fuzz test with training dataset
training_data
=
(
np
.
random
.
random
((
10000
,
10
))
*
20
).
astype
(
np
.
float32
)
model_fuzz_test
=
ModelCoverageMetrics
(
model
,
10000
,
10
,
training_data
)
# fuzz test with original test data
# get test data
test_data
=
(
np
.
random
.
random
((
2000
,
10
))
*
20
).
astype
(
np
.
float32
)
test_labels
=
np
.
random
.
randint
(
0
,
10
,
2000
)
test_labels
=
(
np
.
eye
(
10
)[
test_labels
]).
astype
(
np
.
float32
)
model_fuzz_test
.
test_adequacy_coverage_calculate
(
test_data
)
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_fuzz_test
.
get_kmnc
())
LOGGER
.
info
(
TAG
,
'NBC of this test is : %s'
,
model_fuzz_test
.
get_nbc
())
LOGGER
.
info
(
TAG
,
'SNAC of this test is : %s'
,
model_fuzz_test
.
get_snac
())
# generate adv_data
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
)
adv_data
=
attack
.
batch_generate
(
test_data
,
test_labels
,
batch_size
=
32
)
model_fuzz_test
.
test_adequacy_coverage_calculate
(
adv_data
,
bias_coefficient
=
0.5
)
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_fuzz_test
.
get_kmnc
())
LOGGER
.
info
(
TAG
,
'NBC of this test is : %s'
,
model_fuzz_test
.
get_nbc
())
LOGGER
.
info
(
TAG
,
'SNAC of this test is : %s'
,
model_fuzz_test
.
get_snac
())
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录