Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
6cda5e2e
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6cda5e2e
编写于
8月 17, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 17, 2020
浏览文件
操作
浏览文件
下载
差异文件
!76 Reconstruct Fuzzer
Merge pull request !76 from ZhidanLiu/master
上级
db93de3e
94ff3ad5
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
488 addition
and
138 deletion
+488
-138
example/mnist_demo/lenet5_mnist_fuzzing.py
example/mnist_demo/lenet5_mnist_fuzzing.py
+23
-13
mindarmour/attacks/iterative_gradient_method.py
mindarmour/attacks/iterative_gradient_method.py
+10
-10
mindarmour/fuzzing/fuzzing.py
mindarmour/fuzzing/fuzzing.py
+247
-95
mindarmour/fuzzing/image_transform.py
mindarmour/fuzzing/image_transform.py
+36
-20
tests/ut/python/fuzzing/test_fuzzer.py
tests/ut/python/fuzzing/test_fuzzer.py
+172
-0
未找到文件。
example/mnist_demo/lenet5_mnist_fuzzing.py
浏览文件 @
6cda5e2e
...
...
@@ -19,7 +19,7 @@ from mindspore import context
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
lenet5_net
import
LeNet5
from
mindarmour.fuzzing.fuzzing
import
Fuzz
ing
from
mindarmour.fuzzing.fuzzing
import
Fuzz
er
from
mindarmour.fuzzing.model_coverage_metrics
import
ModelCoverageMetrics
from
mindarmour.utils.logger
import
LogUtil
...
...
@@ -38,11 +38,20 @@ def test_lenet_mnist_fuzzing():
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
model
=
Model
(
net
)
mutate_config
=
[{
'method'
:
'Blur'
,
'params'
:
{
'auto_param'
:
True
}},
{
'method'
:
'Contrast'
,
'params'
:
{
'factor'
:
2
}},
{
'method'
:
'Translate'
,
'params'
:
{
'x_bias'
:
0.1
,
'y_bias'
:
0.2
}},
{
'method'
:
'FGSM'
,
'params'
:
{
'eps'
:
0.1
,
'alpha'
:
0.1
}}
]
# get training data
data_list
=
"./MNIST_unzip/train"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
,
sparse
=
Tru
e
)
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
,
sparse
=
Fals
e
)
train_images
=
[]
for
data
in
ds
.
create_tuple_iterator
():
images
=
data
[
0
].
astype
(
np
.
float32
)
...
...
@@ -56,7 +65,7 @@ def test_lenet_mnist_fuzzing():
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
,
sparse
=
Tru
e
)
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
,
sparse
=
Fals
e
)
test_images
=
[]
test_labels
=
[]
for
data
in
ds
.
create_tuple_iterator
():
...
...
@@ -70,19 +79,20 @@ def test_lenet_mnist_fuzzing():
# make initial seeds
for
img
,
label
in
zip
(
test_images
,
test_labels
):
initial_seeds
.
append
([
img
,
label
])
initial_seeds
.
append
([
img
,
label
,
0
])
initial_seeds
=
initial_seeds
[:
100
]
model_coverage_test
.
test_adequacy_coverage_calculate
(
np
.
array
(
test_images
[:
100
]).
astype
(
np
.
float32
))
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_coverage_test
.
get_kmnc
())
model_coverage_test
.
calculate_coverage
(
np
.
array
(
test_images
[:
100
]).
astype
(
np
.
float32
))
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_coverage_test
.
get_kmnc
())
model_fuzz_test
=
Fuzzing
(
initial_seeds
,
model
,
train_images
,
20
)
failed_tests
=
model_fuzz_test
.
fuzzing
()
if
failed_tests
:
model_coverage_test
.
test_adequacy_coverage_calculate
(
np
.
array
(
failed_tests
).
astype
(
np
.
float32
))
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_coverage_test
.
get_kmnc
())
else
:
LOGGER
.
info
(
TAG
,
'Fuzzing test identifies none failed test'
)
model_fuzz_test
=
Fuzzer
(
model
,
train_images
,
1000
,
10
)
_
,
_
,
_
,
_
,
metrics
=
model_fuzz_test
.
fuzzing
(
mutate_config
,
initial_seeds
,
eval_metric
=
True
)
if
metrics
:
for
key
in
metrics
:
LOGGER
.
info
(
TAG
,
key
+
': %s'
,
metrics
[
key
])
if
__name__
==
'__main__'
:
...
...
mindarmour/attacks/iterative_gradient_method.py
浏览文件 @
6cda5e2e
...
...
@@ -227,8 +227,8 @@ class BasicIterativeMethod(IterativeGradientMethod):
clip_min
,
clip_max
=
self
.
_bounds
clip_diff
=
clip_max
-
clip_min
for
_
in
range
(
self
.
_nb_iter
):
if
'self.prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
prob
)
if
'self.
_
prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
_
prob
)
else
:
d_inputs
=
inputs
adv_x
=
self
.
_attack
.
generate
(
d_inputs
,
labels
)
...
...
@@ -238,8 +238,8 @@ class BasicIterativeMethod(IterativeGradientMethod):
inputs
=
adv_x
else
:
for
_
in
range
(
self
.
_nb_iter
):
if
'self.prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
prob
)
if
'self.
_
prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
_
prob
)
else
:
d_inputs
=
inputs
adv_x
=
self
.
_attack
.
generate
(
d_inputs
,
labels
)
...
...
@@ -311,8 +311,8 @@ class MomentumIterativeMethod(IterativeGradientMethod):
clip_min
,
clip_max
=
self
.
_bounds
clip_diff
=
clip_max
-
clip_min
for
_
in
range
(
self
.
_nb_iter
):
if
'self.prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
prob
)
if
'self.
_
prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
_
prob
)
else
:
d_inputs
=
inputs
gradient
=
self
.
_gradient
(
d_inputs
,
labels
)
...
...
@@ -325,8 +325,8 @@ class MomentumIterativeMethod(IterativeGradientMethod):
inputs
=
adv_x
else
:
for
_
in
range
(
self
.
_nb_iter
):
if
'self.prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
prob
)
if
'self.
_
prob'
in
globals
():
d_inputs
=
_transform_inputs
(
inputs
,
self
.
_
prob
)
else
:
d_inputs
=
inputs
gradient
=
self
.
_gradient
(
d_inputs
,
labels
)
...
...
@@ -476,7 +476,7 @@ class DiverseInputIterativeMethod(BasicIterativeMethod):
is_targeted
=
is_targeted
,
nb_iter
=
nb_iter
,
loss_fn
=
loss_fn
)
self
.
prob
=
check_param_type
(
'prob'
,
prob
,
float
)
self
.
_
prob
=
check_param_type
(
'prob'
,
prob
,
float
)
class
MomentumDiverseInputIterativeMethod
(
MomentumIterativeMethod
):
...
...
@@ -511,7 +511,7 @@ class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod):
is_targeted
=
is_targeted
,
norm_level
=
norm_level
,
loss_fn
=
loss_fn
)
self
.
prob
=
check_param_type
(
'prob'
,
prob
,
float
)
self
.
_
prob
=
check_param_type
(
'prob'
,
prob
,
float
)
def
_transform_inputs
(
inputs
,
prob
,
low
=
29
,
high
=
33
,
full_aug
=
False
):
...
...
mindarmour/fuzzing/fuzzing.py
浏览文件 @
6cda5e2e
...
...
@@ -22,9 +22,11 @@ from mindspore import Tensor
from
mindarmour.fuzzing.model_coverage_metrics
import
ModelCoverageMetrics
from
mindarmour.utils._check_param
import
check_model
,
check_numpy_param
,
\
check_int_positive
from
mindarmour.fuzzing.image_transform
import
Contrast
,
Brightness
,
Blur
,
Noise
,
\
Translate
,
Scale
,
Shear
,
Rotate
check_param_multi_types
,
check_norm_level
,
check_param_in_range
from
mindarmour.fuzzing.image_transform
import
Contrast
,
Brightness
,
Blur
,
\
Noise
,
Translate
,
Scale
,
Shear
,
Rotate
from
mindarmour.attacks
import
FastGradientSignMethod
,
\
MomentumDiverseInputIterativeMethod
,
ProjectedGradientDescent
class
Fuzzer
:
...
...
@@ -35,129 +37,280 @@ class Fuzzer:
Neural Networks <https://dl.acm.org/doi/10.1145/3293882.3330579>`_
Args:
initial_seeds (list): Initial fuzzing seed, format: [[image, label],
[image, label], ...].
target_model (Model): Target fuzz model.
train_dataset (numpy.ndarray): Training dataset used for determining
the neurons' output boundaries.
const_k (int): The number of mutate tests for a seed.
mode (str): Image mode used in image transform, 'L' means grey graph.
Default: 'L'.
max_seed_num (int): The initial seeds max value. Default: 1000
segmented_num (int): The number of segmented sections of neurons'
output intervals.
neuron_num (int): The number of testing neurons.
"""
def
__init__
(
self
,
initial_seeds
,
target_model
,
train_dataset
,
const_K
,
mode
=
'L'
,
max_seed_num
=
1000
):
self
.
initial_seeds
=
initial_seeds
def
__init__
(
self
,
target_model
,
train_dataset
,
segmented_num
,
neuron_num
):
self
.
target_model
=
check_model
(
'model'
,
target_model
,
Model
)
self
.
train_dataset
=
check_numpy_param
(
'train_dataset'
,
train_dataset
)
self
.
const_k
=
check_int_positive
(
'const_k'
,
const_K
)
self
.
mode
=
mode
self
.
max_seed_num
=
check_int_positive
(
'max_seed_num'
,
max_seed_num
)
self
.
coverage_metrics
=
ModelCoverageMetrics
(
target_model
,
1000
,
10
,
train_dataset
)
def
_image_value_expand
(
self
,
image
):
return
image
*
255
def
_image_value_compress
(
self
,
image
):
return
image
/
255
def
_metamorphic_mutate
(
self
,
seed
,
try_num
=
50
):
if
self
.
mode
==
'L'
:
seed
=
seed
[
0
]
info
=
[
seed
,
seed
]
mutate_tests
=
[]
pixel_value_trans
=
[
'Contrast'
,
'Brightness'
,
'Blur'
,
'Noise'
]
affine_trans
=
[
'Translate'
,
'Scale'
,
'Shear'
,
'Rotate'
]
strages
=
{
'Contrast'
:
Contrast
,
'Brightness'
:
Brightness
,
'Blur'
:
Blur
,
'Noise'
:
Noise
,
'Translate'
:
Translate
,
'Scale'
:
Scale
,
'Shear'
:
Shear
,
'Rotate'
:
Rotate
}
for
_
in
range
(
self
.
const_k
):
for
_
in
range
(
try_num
):
if
(
info
[
0
]
==
info
[
1
]).
all
():
trans_strage
=
self
.
_random_pick_mutate
(
affine_trans
,
pixel_value_trans
)
self
.
coverage_metrics
=
ModelCoverageMetrics
(
target_model
,
segmented_num
,
neuron_num
,
train_dataset
)
# Allowed mutate strategies so far.
self
.
strategies
=
{
'Contrast'
:
Contrast
,
'Brightness'
:
Brightness
,
'Blur'
:
Blur
,
'Noise'
:
Noise
,
'Translate'
:
Translate
,
'Scale'
:
Scale
,
'Shear'
:
Shear
,
'Rotate'
:
Rotate
,
'FGSM'
:
FastGradientSignMethod
,
'PGD'
:
ProjectedGradientDescent
,
'MDIIM'
:
MomentumDiverseInputIterativeMethod
}
self
.
affine_trans_list
=
[
'Translate'
,
'Scale'
,
'Shear'
,
'Rotate'
]
self
.
pixel_value_trans_list
=
[
'Contrast'
,
'Brightness'
,
'Blur'
,
'Noise'
]
self
.
attacks_list
=
[
'FGSM'
,
'PGD'
,
'MDIIM'
]
self
.
attack_param_checklists
=
{
'FGSM'
:
{
'params'
:
{
'eps'
:
{
'dtype'
:
[
float
,
int
],
'range'
:
[
0
,
1
]},
'alpha'
:
{
'dtype'
:
[
float
,
int
],
'range'
:
[
0
,
1
]},
'bounds'
:
{
'dtype'
:
[
list
,
tuple
],
'range'
:
None
},
}},
'PGD'
:
{
'params'
:
{
'eps'
:
{
'dtype'
:
[
float
,
int
],
'range'
:
[
0
,
1
]},
'eps_iter'
:
{
'dtype'
:
[
float
,
int
],
'range'
:
[
0
,
1e5
]},
'nb_iter'
:
{
'dtype'
:
[
float
,
int
],
'range'
:
[
0
,
1e5
]},
'bounds'
:
{
'dtype'
:
[
list
,
tuple
],
'range'
:
None
},
}},
'MDIIM'
:
{
'params'
:
{
'eps'
:
{
'dtype'
:
[
float
,
int
],
'range'
:
[
0
,
1
]},
'norm_level'
:
{
'dtype'
:
[
str
],
'range'
:
None
},
'prob'
:
{
'dtype'
:
[
float
,
int
],
'range'
:
[
0
,
1
]},
'bounds'
:
{
'dtype'
:
[
list
,
tuple
],
'range'
:
None
},
}}}
def
_check_attack_params
(
self
,
method
,
params
):
"""Check input parameters of attack methods."""
allow_params
=
self
.
attack_param_checklists
[
method
][
'params'
].
keys
()
for
p
in
params
:
if
p
not
in
allow_params
:
msg
=
"parameters of {} must in {}"
.
format
(
method
,
allow_params
)
raise
ValueError
(
msg
)
if
p
==
'bounds'
:
bounds
=
check_param_multi_types
(
'bounds'
,
params
[
p
],
[
list
,
tuple
])
for
b
in
bounds
:
_
=
check_param_multi_types
(
'bound'
,
b
,
[
int
,
float
])
elif
p
==
'norm_level'
:
_
=
check_norm_level
(
params
[
p
])
else
:
allow_type
=
self
.
attack_param_checklists
[
method
][
'params'
][
p
][
'dtype'
]
allow_range
=
self
.
attack_param_checklists
[
method
][
'params'
][
p
][
'range'
]
_
=
check_param_multi_types
(
str
(
p
),
params
[
p
],
allow_type
)
_
=
check_param_in_range
(
str
(
p
),
params
[
p
],
allow_range
[
0
],
allow_range
[
1
])
def
_metamorphic_mutate
(
self
,
seed
,
mutates
,
mutate_config
,
mutate_num_per_seed
):
"""Mutate a seed using strategies random selected from mutate_config."""
mutate_samples
=
[]
mutate_strategies
=
[]
only_pixel_trans
=
seed
[
2
]
for
_
in
range
(
mutate_num_per_seed
):
strage
=
choice
(
mutate_config
)
# Choose a pixel value based transform method
if
only_pixel_trans
:
while
strage
[
'method'
]
not
in
self
.
pixel_value_trans_list
:
strage
=
choice
(
mutate_config
)
transform
=
mutates
[
strage
[
'method'
]]
params
=
strage
[
'params'
]
method
=
strage
[
'method'
]
if
method
in
list
(
self
.
pixel_value_trans_list
+
self
.
affine_trans_list
):
transform
.
set_params
(
**
params
)
mutate_sample
=
transform
.
transform
(
seed
[
0
])
else
:
trans_strage
=
self
.
_random_pick_mutate
(
pixel_value_trans
,
[])
transform
=
strages
[
trans_strage
](
self
.
_image_value_expand
(
seed
),
self
.
mode
)
transform
.
set_params
(
auto_param
=
True
)
mutate_test
=
transform
.
transform
()
mutate_test
=
np
.
expand_dims
(
self
.
_image_value_compress
(
mutate_test
),
0
)
if
self
.
_is_trans_valid
(
seed
,
mutate_test
):
if
trans_strage
in
affine_trans
:
info
[
1
]
=
mutate_test
mutate_tests
.
append
(
mutate_test
)
if
not
mutate_tests
:
mutate_tests
.
append
(
seed
)
return
np
.
array
(
mutate_tests
)
def
fuzzing
(
self
,
coverage_metric
=
'KMNC'
):
for
p
in
params
:
transform
.
__setattr__
(
'_'
+
str
(
p
),
params
[
p
])
mutate_sample
=
transform
.
generate
([
seed
[
0
].
astype
(
np
.
float32
)],
[
seed
[
1
]])[
0
]
if
method
not
in
self
.
pixel_value_trans_list
:
only_pixel_trans
=
1
mutate_sample
=
[
mutate_sample
,
seed
[
1
],
only_pixel_trans
]
if
self
.
_is_trans_valid
(
seed
[
0
],
mutate_sample
[
0
]):
mutate_samples
.
append
(
mutate_sample
)
mutate_strategies
.
append
(
method
)
if
not
mutate_samples
:
mutate_samples
.
append
(
seed
)
mutate_strategies
.
append
(
None
)
return
np
.
array
(
mutate_samples
),
mutate_strategies
def
_init_mutates
(
self
,
mutate_config
):
""" Check whether the mutate_config meet the specification."""
has_pixel_trans
=
False
for
mutate
in
mutate_config
:
if
mutate
[
'method'
]
in
self
.
pixel_value_trans_list
:
has_pixel_trans
=
True
break
if
not
has_pixel_trans
:
msg
=
"mutate methods in mutate_config at lease have one in {}"
.
format
(
self
.
pixel_value_trans_list
)
raise
ValueError
(
msg
)
mutates
=
{}
for
mutate
in
mutate_config
:
method
=
mutate
[
'method'
]
params
=
mutate
[
'params'
]
if
method
not
in
self
.
attacks_list
:
mutates
[
method
]
=
self
.
strategies
[
method
]()
else
:
self
.
_check_attack_params
(
method
,
params
)
network
=
self
.
target_model
.
_network
loss_fn
=
self
.
target_model
.
_loss_fn
mutates
[
method
]
=
self
.
strategies
[
method
](
network
,
loss_fn
=
loss_fn
)
return
mutates
def
evaluate
(
self
,
fuzz_samples
,
gt_labels
,
fuzz_preds
,
fuzz_strategies
):
"""
Evaluate generated fuzzing samples in three dimention: accuracy,
attack success rate and neural coverage.
Args:
fuzz_samples (numpy.ndarray): Generated fuzzing samples according to seeds.
gt_labels (numpy.ndarray): Ground Truth of seeds.
fuzz_preds (numpy.ndarray): Predictions of generated fuzz samples.
fuzz_strategies (numpy.ndarray): Mutate strategies of fuzz samples.
Returns:
dict, evaluate metrics include accuarcy, attack success rate
and neural coverage.
"""
gt_labels
=
np
.
asarray
(
gt_labels
)
fuzz_preds
=
np
.
asarray
(
fuzz_preds
)
temp
=
np
.
argmax
(
gt_labels
,
axis
=
1
)
==
np
.
argmax
(
fuzz_preds
,
axis
=
1
)
acc
=
np
.
sum
(
temp
)
/
np
.
size
(
temp
)
cond
=
[
elem
in
self
.
attacks_list
for
elem
in
fuzz_strategies
]
temp
=
temp
[
cond
]
attack_success_rate
=
1
-
np
.
sum
(
temp
)
/
np
.
size
(
temp
)
self
.
coverage_metrics
.
calculate_coverage
(
np
.
array
(
fuzz_samples
).
astype
(
np
.
float32
))
kmnc
=
self
.
coverage_metrics
.
get_kmnc
()
nbc
=
self
.
coverage_metrics
.
get_nbc
()
snac
=
self
.
coverage_metrics
.
get_snac
()
metrics
=
{}
metrics
[
'Accuracy'
]
=
acc
metrics
[
'Attack_succrss_rate'
]
=
attack_success_rate
metrics
[
'Neural_coverage_KMNC'
]
=
kmnc
metrics
[
'Neural_coverage_NBC'
]
=
nbc
metrics
[
'Neural_coverage_SNAC'
]
=
snac
return
metrics
def
fuzzing
(
self
,
mutate_config
,
initial_seeds
,
coverage_metric
=
'KMNC'
,
eval_metric
=
True
,
max_iters
=
10000
,
mutate_num_per_seed
=
20
):
"""
Fuzzing tests for deep neural networks.
Args:
mutate_config (list): Mutate configs. The format is
[{'method': 'Blur',
'params': {'auto_param': True}},
{'method': 'Contrast',
'params': {'factor': 2}},
...]. The support methods list is in `self.strategies`,
The params of each method must within the range of changeable
parameters.
initial_seeds (numpy.ndarray): Initial seeds used to generate
mutated samples.
coverage_metric (str): Model coverage metric of neural networks.
Default: 'KMNC'.
eval_metric (bool): Whether to evaluate the generated fuzz samples.
Default: True.
max_iters (int): Max number of select a seed to mutate.
Default: 10000.
mutate_num_per_seed (int): The number of mutate times for a seed.
Default: 20.
Returns:
list, mutated
tests mis-predicted by target DNN model
.
list, mutated
samples
.
"""
seed
=
self
.
_select_next
()
failed_tests
=
[]
seed_num
=
0
while
seed
and
seed_num
<
self
.
max_seed_num
:
mutate_tests
=
self
.
_metamorphic_mutate
(
seed
[
0
])
coverages
,
predicts
=
self
.
_run
(
mutate_tests
,
coverage_metric
)
# Check whether the mutate_config meet the specification.
mutates
=
self
.
_init_mutates
(
mutate_config
)
seed
,
initial_seeds
=
self
.
_select_next
(
initial_seeds
)
fuzz_samples
=
[]
gt_labels
=
[]
fuzz_preds
=
[]
fuzz_strategies
=
[]
iter_num
=
0
while
initial_seeds
and
iter_num
<
max_iters
:
# Mutate a seed.
mutate_samples
,
mutate_strategies
=
self
.
_metamorphic_mutate
(
seed
,
mutates
,
mutate_config
,
mutate_num_per_seed
)
# Calculate the coverages and predictions of generated samples.
coverages
,
predicts
=
self
.
_run
(
mutate_samples
,
coverage_metric
)
coverage_gains
=
self
.
_coverage_gains
(
coverages
)
for
mutate
,
cov
,
res
in
zip
(
mutate_tests
,
coverage_gains
,
predicts
):
if
np
.
argmax
(
seed
[
1
])
!=
np
.
argmax
(
res
):
failed_tests
.
append
(
mutate
)
continue
for
mutate
,
cov
,
pred
,
strategy
in
zip
(
mutate_samples
,
coverage_gains
,
predicts
,
mutate_strategies
):
fuzz_samples
.
append
(
mutate
[
0
])
gt_labels
.
append
(
mutate
[
1
])
fuzz_preds
.
append
(
pred
)
fuzz_strategies
.
append
(
strategy
)
# if the mutate samples has coverage gains add this samples in
# the initial seeds to guide new mutates.
if
cov
>
0
:
self
.
initial_seeds
.
append
([
mutate
,
seed
[
1
]])
seed
=
self
.
_select_next
()
seed_num
+=
1
return
failed_tests
initial_seeds
.
append
(
mutate
)
seed
,
initial_seeds
=
self
.
_select_next
(
initial_seeds
)
iter_num
+=
1
metrics
=
None
if
eval_metric
:
metrics
=
self
.
evaluate
(
fuzz_samples
,
gt_labels
,
fuzz_preds
,
fuzz_strategies
)
return
fuzz_samples
,
gt_labels
,
fuzz_preds
,
fuzz_strategies
,
metrics
def
_coverage_gains
(
self
,
coverages
):
""" Calculate the coverage gains of mutated samples. """
gains
=
[
0
]
+
coverages
[:
-
1
]
gains
=
np
.
array
(
coverages
)
-
np
.
array
(
gains
)
return
gains
def
_run
(
self
,
mutate_tests
,
coverage_metric
=
"KNMC"
):
def
_run
(
self
,
mutate_samples
,
coverage_metric
=
"KNMC"
):
""" Calculate the coverages and predictions of generated samples."""
samples
=
[
s
[
0
]
for
s
in
mutate_samples
]
samples
=
np
.
array
(
samples
)
coverages
=
[]
result
=
self
.
target_model
.
predict
(
Tensor
(
mutate_tests
.
astype
(
np
.
float32
)))
result
=
result
.
asnumpy
()
for
index
in
range
(
len
(
mutate_tests
)):
mutate
=
np
.
expand_dims
(
mutate_tests
[
index
],
0
)
self
.
coverage_metrics
.
model_coverage_test
(
mutate
.
astype
(
np
.
float32
),
batch_size
=
1
)
predictions
=
self
.
target_model
.
predict
(
Tensor
(
samples
.
astype
(
np
.
float32
)))
predictions
=
predictions
.
asnumpy
()
for
index
in
range
(
len
(
samples
)):
mutate
=
samples
[:
index
+
1
]
self
.
coverage_metrics
.
calculate_coverage
(
mutate
.
astype
(
np
.
float32
))
if
coverage_metric
==
"KMNC"
:
coverages
.
append
(
self
.
coverage_metrics
.
get_kmnc
())
if
coverage_metric
==
'NBC'
:
coverages
.
append
(
self
.
coverage_metrics
.
get_nbc
())
if
coverage_metric
==
'SNAC'
:
coverages
.
append
(
self
.
coverage_metrics
.
get_snac
())
return
coverages
,
predictions
return
coverages
,
result
def
_select_next
(
self
):
seed
=
choice
(
self
.
initial_seeds
)
return
seed
def
_select_next
(
self
,
initial_seeds
):
"""Randomly select a seed from `initial_seeds`."""
seed_num
=
choice
(
range
(
len
(
initial_seeds
)))
seed
=
initial_seeds
[
seed_num
]
del
initial_seeds
[
seed_num
]
return
seed
,
initial_seeds
def
_random_pick_mutate
(
self
,
affine_trans_list
,
pixel_value_trans_list
):
strage
=
choice
(
affine_trans_list
+
pixel_value_trans_list
)
return
strage
def
_is_trans_valid
(
self
,
seed
,
mutate_test
):
def
_is_trans_valid
(
self
,
seed
,
mutate_sample
):
""" Check a mutated sample is valid. If the number of changed pixels in
a seed is less than pixels_change_rate*size(seed), this mutate is valid.
Else check the infinite norm of seed changes, if the value of the
infinite norm less than pixel_value_change_rate*255, this mutate is
valid too. Otherwise the opposite."""
is_valid
=
False
pixels_change_rate
=
0.02
pixel_value_change_rate
=
0.2
diff
=
np
.
array
(
seed
-
mutate_
test
).
flatten
()
diff
=
np
.
array
(
seed
-
mutate_
sample
).
flatten
()
size
=
np
.
shape
(
diff
)[
0
]
l0
=
np
.
linalg
.
norm
(
diff
,
ord
=
0
)
linf
=
np
.
linalg
.
norm
(
diff
,
ord
=
np
.
inf
)
...
...
@@ -167,5 +320,4 @@ class Fuzzer:
else
:
if
linf
<
pixel_value_change_rate
*
255
:
is_valid
=
True
return
is_valid
mindarmour/fuzzing/image_transform.py
浏览文件 @
6cda5e2e
...
...
@@ -88,7 +88,8 @@ def is_rgb(img):
Bool, True if input is RGB.
"""
if
is_numpy
(
img
):
if
len
(
np
.
shape
(
img
))
==
3
:
img_shape
=
np
.
shape
(
img
)
if
len
(
np
.
shape
(
img
))
==
3
and
(
img_shape
[
0
]
==
3
or
img_shape
[
2
]
==
3
):
return
True
return
False
raise
TypeError
(
'img should be Numpy array. Got {}'
.
format
(
type
(
img
)))
...
...
@@ -127,6 +128,7 @@ class ImageTransform:
of the image is not normalized , it will be normalized between 0 to 1."""
rgb
=
is_rgb
(
image
)
chw
=
False
gray3dim
=
False
normalized
=
is_normalized
(
image
)
if
rgb
:
chw
=
is_chw
(
image
)
...
...
@@ -134,13 +136,17 @@ class ImageTransform:
image
=
chw_to_hwc
(
image
)
else
:
image
=
image
else
:
if
len
(
np
.
shape
(
image
))
==
3
:
gray3dim
=
True
image
=
image
[
0
]
else
:
image
=
image
if
normalized
:
image
=
np
.
uint8
(
image
*
255
)
return
rgb
,
chw
,
normalized
,
image
return
rgb
,
chw
,
normalized
,
gray3dim
,
image
def
_original_format
(
self
,
image
,
chw
,
normalized
):
def
_original_format
(
self
,
image
,
chw
,
normalized
,
gray3dim
):
""" Return transformed image with original format. """
if
not
is_numpy
(
image
):
image
=
np
.
array
(
image
)
...
...
@@ -148,6 +154,8 @@ class ImageTransform:
image
=
hwc_to_chw
(
image
)
if
normalized
:
image
=
image
/
255
if
gray3dim
:
image
=
np
.
expand_dims
(
image
,
0
)
return
image
def
transform
(
self
,
image
):
...
...
@@ -191,11 +199,12 @@ class Contrast(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
_
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
_
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
image
=
to_pil
(
image
)
img_contrast
=
ImageEnhance
.
Contrast
(
image
)
trans_image
=
img_contrast
.
enhance
(
self
.
factor
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
...
...
@@ -237,11 +246,12 @@ class Brightness(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
_
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
_
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
image
=
to_pil
(
image
)
img_contrast
=
ImageEnhance
.
Brightness
(
image
)
trans_image
=
img_contrast
.
enhance
(
self
.
factor
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
...
...
@@ -280,10 +290,11 @@ class Blur(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
_
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
_
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
image
=
to_pil
(
image
)
trans_image
=
image
.
filter
(
ImageFilter
.
GaussianBlur
(
radius
=
self
.
radius
))
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
...
...
@@ -324,12 +335,13 @@ class Noise(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
_
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
_
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
noise
=
np
.
random
.
uniform
(
low
=-
1
,
high
=
1
,
size
=
np
.
shape
(
image
))
trans_image
=
np
.
copy
(
image
)
trans_image
[
noise
<
-
self
.
factor
]
=
0
trans_image
[
noise
>
self
.
factor
]
=
1
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
...
...
@@ -375,7 +387,7 @@ class Translate(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
_
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
_
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
img
=
to_pil
(
image
)
if
self
.
auto_param
:
image_shape
=
np
.
shape
(
image
)
...
...
@@ -383,7 +395,8 @@ class Translate(ImageTransform):
self
.
y_bias
=
image_shape
[
1
]
*
self
.
y_bias
trans_image
=
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
self
.
x_bias
,
0
,
1
,
self
.
y_bias
))
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
...
...
@@ -431,7 +444,7 @@ class Scale(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
rgb
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
rgb
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
if
rgb
:
h
,
w
,
_
=
np
.
shape
(
image
)
else
:
...
...
@@ -442,7 +455,8 @@ class Scale(ImageTransform):
trans_image
=
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
self
.
factor_x
,
0
,
move_x_centor
,
0
,
self
.
factor_y
,
move_y_centor
))
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
...
...
@@ -500,7 +514,7 @@ class Shear(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
rgb
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
rgb
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
img
=
to_pil
(
image
)
if
rgb
:
h
,
w
,
_
=
np
.
shape
(
image
)
...
...
@@ -523,7 +537,8 @@ class Shear(ImageTransform):
trans_image
=
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
scale
,
scale
*
self
.
factor_x
,
move_x_cen
,
scale
*
self
.
factor_y
,
scale
,
move_y_cen
))
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
...
...
@@ -562,8 +577,9 @@ class Rotate(ImageTransform):
Returns:
numpy.ndarray, transformed image.
"""
_
,
chw
,
normalized
,
image
=
self
.
_check
(
image
)
_
,
chw
,
normalized
,
gray3dim
,
image
=
self
.
_check
(
image
)
img
=
to_pil
(
image
)
trans_image
=
img
.
rotate
(
self
.
angle
,
expand
=
True
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
)
trans_image
=
self
.
_original_format
(
trans_image
,
chw
,
normalized
,
gray3dim
)
return
trans_image
tests/ut/python/fuzzing/test_fuzzer.py
0 → 100644
浏览文件 @
6cda5e2e
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model-fuzz coverage test.
"""
import
numpy
as
np
import
pytest
from
mindspore
import
context
from
mindspore
import
nn
from
mindspore.common.initializer
import
TruncatedNormal
from
mindspore.ops
import
operations
as
P
from
mindspore.train
import
Model
from
mindarmour.fuzzing.fuzzing
import
Fuzzer
from
mindarmour.fuzzing.model_coverage_metrics
import
ModelCoverageMetrics
from
mindarmour.utils.logger
import
LogUtil
LOGGER
=
LogUtil
.
get_instance
()
TAG
=
'Fuzzing test'
LOGGER
.
set_level
(
'INFO'
)
def
conv
(
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
padding
=
0
):
weight
=
weight_variable
()
return
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
weight_init
=
weight
,
has_bias
=
False
,
pad_mode
=
"valid"
)
def
fc_with_initialize
(
input_channels
,
out_channels
):
weight
=
weight_variable
()
bias
=
weight_variable
()
return
nn
.
Dense
(
input_channels
,
out_channels
,
weight
,
bias
)
def
weight_variable
():
return
TruncatedNormal
(
0.02
)
class
Net
(
nn
.
Cell
):
"""
Lenet network
"""
def
__init__
(
self
):
super
(
Net
,
self
).
__init__
()
self
.
conv1
=
conv
(
1
,
6
,
5
)
self
.
conv2
=
conv
(
6
,
16
,
5
)
self
.
fc1
=
fc_with_initialize
(
16
*
5
*
5
,
120
)
self
.
fc2
=
fc_with_initialize
(
120
,
84
)
self
.
fc3
=
fc_with_initialize
(
84
,
10
)
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
reshape
=
P
.
Reshape
()
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
reshape
(
x
,
(
-
1
,
16
*
5
*
5
))
x
=
self
.
fc1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc3
(
x
)
return
x
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
env_onecard
@
pytest
.
mark
.
component_mindarmour
def
test_fuzzing_ascend
():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# load network
net
=
Net
()
model
=
Model
(
net
)
batch_size
=
8
num_classe
=
10
mutate_config
=
[{
'method'
:
'Blur'
,
'params'
:
{
'auto_param'
:
True
}},
{
'method'
:
'Contrast'
,
'params'
:
{
'factor'
:
2
}},
{
'method'
:
'Translate'
,
'params'
:
{
'x_bias'
:
0.1
,
'y_bias'
:
0.2
}},
{
'method'
:
'FGSM'
,
'params'
:
{
'eps'
:
0.1
,
'alpha'
:
0.1
}}
]
# initialize fuzz test with training dataset
train_images
=
np
.
random
.
rand
(
32
,
1
,
32
,
32
).
astype
(
np
.
float32
)
model_coverage_test
=
ModelCoverageMetrics
(
model
,
1000
,
10
,
train_images
)
# fuzz test with original test data
# get test data
test_images
=
np
.
random
.
rand
(
batch_size
,
1
,
32
,
32
).
astype
(
np
.
float32
)
test_labels
=
np
.
random
.
randint
(
num_classe
,
size
=
batch_size
).
astype
(
np
.
int32
)
test_labels
=
(
np
.
eye
(
num_classe
)[
test_labels
]).
astype
(
np
.
float32
)
initial_seeds
=
[]
# make initial seeds
for
img
,
label
in
zip
(
test_images
,
test_labels
):
initial_seeds
.
append
([
img
,
label
,
0
])
initial_seeds
=
initial_seeds
[:
100
]
model_coverage_test
.
calculate_coverage
(
np
.
array
(
test_images
[:
100
]).
astype
(
np
.
float32
))
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_coverage_test
.
get_kmnc
())
model_fuzz_test
=
Fuzzer
(
model
,
train_images
,
1000
,
10
)
_
,
_
,
_
,
_
,
metrics
=
model_fuzz_test
.
fuzzing
(
mutate_config
,
initial_seeds
)
print
(
metrics
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_onecard
@
pytest
.
mark
.
component_mindarmour
def
test_fuzzing_cpu
():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# load network
net
=
Net
()
model
=
Model
(
net
)
batch_size
=
8
num_classe
=
10
mutate_config
=
[{
'method'
:
'Blur'
,
'params'
:
{
'auto_param'
:
True
}},
{
'method'
:
'Contrast'
,
'params'
:
{
'factor'
:
2
}},
{
'method'
:
'Translate'
,
'params'
:
{
'x_bias'
:
0.1
,
'y_bias'
:
0.2
}},
{
'method'
:
'FGSM'
,
'params'
:
{
'eps'
:
0.1
,
'alpha'
:
0.1
}}
]
# initialize fuzz test with training dataset
train_images
=
np
.
random
.
rand
(
32
,
1
,
32
,
32
).
astype
(
np
.
float32
)
model_coverage_test
=
ModelCoverageMetrics
(
model
,
1000
,
10
,
train_images
)
# fuzz test with original test data
# get test data
test_images
=
np
.
random
.
rand
(
batch_size
,
1
,
32
,
32
).
astype
(
np
.
float32
)
test_labels
=
np
.
random
.
randint
(
num_classe
,
size
=
batch_size
).
astype
(
np
.
int32
)
test_labels
=
(
np
.
eye
(
num_classe
)[
test_labels
]).
astype
(
np
.
float32
)
initial_seeds
=
[]
# make initial seeds
for
img
,
label
in
zip
(
test_images
,
test_labels
):
initial_seeds
.
append
([
img
,
label
,
0
])
initial_seeds
=
initial_seeds
[:
100
]
model_coverage_test
.
calculate_coverage
(
np
.
array
(
test_images
[:
100
]).
astype
(
np
.
float32
))
LOGGER
.
info
(
TAG
,
'KMNC of this test is : %s'
,
model_coverage_test
.
get_kmnc
())
model_fuzz_test
=
Fuzzer
(
model
,
train_images
,
1000
,
10
)
_
,
_
,
_
,
_
,
metrics
=
model_fuzz_test
.
fuzzing
(
mutate_config
,
initial_seeds
)
print
(
metrics
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录