diff --git a/mindarmour/diff_privacy/mechanisms/mechanisms.py b/mindarmour/diff_privacy/mechanisms/mechanisms.py index b7a6cd1a8d5ae0113f6c74427b9d0a31c536bb01..76354c6df15ce8dc6042508b4471b39305556cf7 100644 --- a/mindarmour/diff_privacy/mechanisms/mechanisms.py +++ b/mindarmour/diff_privacy/mechanisms/mechanisms.py @@ -216,8 +216,8 @@ class AdaGaussianRandom(Mechanisms): noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float) check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0) self._noise_decay_rate = Tensor(noise_decay_rate, mstype.float32) - if decay_policy not in ['Time', 'Step']: - raise NameError("The decay_policy must be in ['Time', 'Step'], but " + if decay_policy not in ['Time', 'Step', 'Exp']: + raise NameError("The decay_policy must be in ['Time', 'Step', 'Exp'], but " "get {}".format(decay_policy)) self._decay_policy = decay_policy self._mul = P.Mul() @@ -245,18 +245,18 @@ class _MechanismsParamsUpdater(Cell): Args: policy(str): Pass in by the mechanisms class, mechanisms parameters update policy. decay_rate(Tensor): Pass in by the mechanisms class, hyper parameter for controlling the decay size. - cur_params(Parameter): Pass in by the mechanisms class, current params value in this time. - init_params(Parameter):Pass in by the mechanisms class, initial params value to be updated. + cur_noise_multiplier(Parameter): Pass in by the mechanisms class, current params value in this time. + init_noise_multiplier(Parameter):Pass in by the mechanisms class, initial params value to be updated. Returns: Tuple, next params value. """ - def __init__(self, policy, decay_rate, cur_params, init_params): + def __init__(self, policy, decay_rate, cur_noise_multiplier, init_noise_multiplier): super(_MechanismsParamsUpdater, self).__init__() self._policy = policy self._decay_rate = decay_rate - self._cur_params = cur_params - self._init_params = init_params + self._cur_noise_multiplier = cur_noise_multiplier + self._init_noise_multiplier = init_noise_multiplier self._div = P.Sub() self._add = P.TensorAdd() @@ -264,6 +264,7 @@ class _MechanismsParamsUpdater(Cell): self._sub = P.Sub() self._one = Tensor(1, mstype.float32) self._mul = P.Mul() + self._exp = P.Exp() def construct(self): """ @@ -273,10 +274,14 @@ class _MechanismsParamsUpdater(Cell): Tuple, next step parameters value. """ if self._policy == 'Time': - temp = self._div(self._init_params, self._cur_params) + temp = self._div(self._init_noise_multiplier, self._cur_noise_multiplier) temp = self._add(temp, self._decay_rate) - next_params = self._assign(self._cur_params, self._div(self._init_params, temp)) - else: + next_noise_multiplier = self._assign(self._cur_noise_multiplier, + self._div(self._init_noise_multiplier, temp)) + elif self._policy == 'Step': temp = self._sub(self._one, self._decay_rate) - next_params = self._assign(self._cur_params, self._mul(temp, self._cur_params)) - return next_params + next_noise_multiplier = self._assign(self._cur_noise_multiplier, + self._mul(temp, self._cur_noise_multiplier)) + else: + next_noise_multiplier = self._assign(self._cur_noise_multiplier, self._div(self._one, self._exp(self._one))) + return next_noise_multiplier diff --git a/mindarmour/diff_privacy/optimizer/optimizer.py b/mindarmour/diff_privacy/optimizer/optimizer.py index 78b7a569cceaf76a8db09e3d8f489aedaee1f4e6..1c28ce1f0d3d2ec5a4cc23589cea2e9efb0cd75b 100644 --- a/mindarmour/diff_privacy/optimizer/optimizer.py +++ b/mindarmour/diff_privacy/optimizer/optimizer.py @@ -130,8 +130,9 @@ class DPOptimizerClassFactory: if self._mech is not None and self._mech._decay_policy is not None: self._mech_param_updater = _MechanismsParamsUpdater(policy=self._mech._decay_policy, decay_rate=self._mech._noise_decay_rate, - cur_params=self._mech._noise_multiplier, - init_params= + cur_noise_multiplier= + self._mech._noise_multiplier, + init_noise_multiplier= self._mech._initial_noise_multiplier) def construct(self, gradients): diff --git a/mindarmour/diff_privacy/train/model.py b/mindarmour/diff_privacy/train/model.py index 40d130a8a7bc5c4863ff0ddbfc7f4b0974687446..7991449d4de1c6e6342f1577db881e633aea556d 100644 --- a/mindarmour/diff_privacy/train/model.py +++ b/mindarmour/diff_privacy/train/model.py @@ -195,48 +195,47 @@ class DPModel(Model): mech=self._mech).set_train() return network - -def _build_train_network(self): - """Build train network""" - network = self._network - if self._micro_batches: - if self._optimizer: - if self._loss_scale_manager_set: - network = self._amp_build_train_network(network, - self._optimizer, - self._loss_fn, - level=self._amp_level, - loss_scale_manager=self._loss_scale_manager, - keep_batchnorm_fp32=self._keep_bn_fp32) - else: - network = self._amp_build_train_network(network, - self._optimizer, - self._loss_fn, - level=self._amp_level, - keep_batchnorm_fp32=self._keep_bn_fp32) - elif self._loss_fn: - network = nn.WithLossCell(network, self._loss_fn) - else: - if self._optimizer: - if self._loss_scale_manager_set: - network = amp.build_train_network(network, - self._optimizer, - self._loss_fn, - level=self._amp_level, - loss_scale_manager=self._loss_scale_manager, - keep_batchnorm_fp32=self._keep_bn_fp32) - else: - network = amp.build_train_network(network, - self._optimizer, - self._loss_fn, - level=self._amp_level, - keep_batchnorm_fp32=self._keep_bn_fp32) - elif self._loss_fn: - network = nn.WithLossCell(network, self._loss_fn) - - if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): - network.set_auto_parallel() - return network + def _build_train_network(self): + """Build train network""" + network = self._network + if self._micro_batches: + if self._optimizer: + if self._loss_scale_manager_set: + network = self._amp_build_train_network(network, + self._optimizer, + self._loss_fn, + level=self._amp_level, + loss_scale_manager=self._loss_scale_manager, + keep_batchnorm_fp32=self._keep_bn_fp32) + else: + network = self._amp_build_train_network(network, + self._optimizer, + self._loss_fn, + level=self._amp_level, + keep_batchnorm_fp32=self._keep_bn_fp32) + elif self._loss_fn: + network = nn.WithLossCell(network, self._loss_fn) + else: + if self._optimizer: + if self._loss_scale_manager_set: + network = amp.build_train_network(network, + self._optimizer, + self._loss_fn, + level=self._amp_level, + loss_scale_manager=self._loss_scale_manager, + keep_batchnorm_fp32=self._keep_bn_fp32) + else: + network = amp.build_train_network(network, + self._optimizer, + self._loss_fn, + level=self._amp_level, + keep_batchnorm_fp32=self._keep_bn_fp32) + elif self._loss_fn: + network = nn.WithLossCell(network, self._loss_fn) + + if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): + network.set_auto_parallel() + return network class _ClipGradients(nn.Cell): @@ -376,8 +375,10 @@ class _TrainOneStepWithLossScaleCell(Cell): if self._mech is not None and self._mech._decay_policy is not None: self._mech_param_updater = _MechanismsParamsUpdater(policy=self._mech._decay_policy, decay_rate=self._mech._noise_decay_rate, - cur_params=self._mech._noise_multiplier, - init_params=self._mech._initial_noise_multiplier) + cur_noise_multiplier= + self._mech._noise_multiplier, + init_noise_multiplier= + self._mech._initial_noise_multiplier) def construct(self, data, label, sens=None): """ @@ -416,8 +417,11 @@ class _TrainOneStepWithLossScaleCell(Cell): loss = P.Div()(total_loss, self._micro_float) if self._mech is not None: - grad_noise = self._hyper_map(self._mech, grads) - grads = self._tuple_add(grads, grad_noise) + grad_noise_tuple = () + for grad_item in grads: + grad_noise = self._mech(grad_item) + grad_noise_tuple = grad_noise_tuple + (grad_noise,) + grads = self._tuple_add(grads, grad_noise_tuple) grads = self._hyper_map(F.partial(_grad_scale, self._micro_float), grads) # update mech parameters if self._mech_param_updater is not None: @@ -517,8 +521,10 @@ class _TrainOneStepCell(Cell): if self._mech is not None and self._mech._decay_policy is not None: self._mech_param_updater = _MechanismsParamsUpdater(policy=self._mech._decay_policy, decay_rate=self._mech._noise_decay_rate, - cur_params=self._mech._noise_multiplier, - init_params=self._mech._initial_noise_multiplier) + cur_noise_multiplier= + self._mech._noise_multiplier, + init_noise_multiplier= + self._mech._initial_noise_multiplier) def construct(self, data, label): """ @@ -543,8 +549,11 @@ class _TrainOneStepCell(Cell): loss = P.Div()(total_loss, self._micro_float) if self._mech is not None: - grad_noise = self._hyper_map(self._mech, grads) - grads = self._tuple_add(grads, grad_noise) + grad_noise_tuple = () + for grad_item in grads: + grad_noise = self._mech(grad_item) + grad_noise_tuple = grad_noise_tuple + (grad_noise,) + grads = self._tuple_add(grads, grad_noise_tuple) grads = self._hyper_map(F.partial(_grad_scale, self._micro_float), grads) # update mech parameters if self._mech_param_updater is not None: diff --git a/tests/ut/python/diff_privacy/test_mechanisms.py b/tests/ut/python/diff_privacy/test_mechanisms.py index 3bc636956f49e34b75da9aa013812b0140680251..2f7262cfc545596882a1e378b0059d7504b891b6 100644 --- a/tests/ut/python/diff_privacy/test_mechanisms.py +++ b/tests/ut/python/diff_privacy/test_mechanisms.py @@ -30,7 +30,7 @@ from mindarmour.diff_privacy import MechanismsFactory @pytest.mark.component_mindarmour def test_graph_gaussian(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") - grad = Tensor([3, 2, 4], mstype.float32) + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 net = GaussianRandom(norm_bound, initial_noise_multiplier) @@ -44,7 +44,7 @@ def test_graph_gaussian(): @pytest.mark.component_mindarmour def test_pynative_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") - grad = Tensor([3, 2, 4], mstype.float32) + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 net = GaussianRandom(norm_bound, initial_noise_multiplier) @@ -58,7 +58,7 @@ def test_pynative_gaussian(): @pytest.mark.component_mindarmour def test_graph_ada_gaussian(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") - grad = Tensor([3, 2, 4], mstype.float32) + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 @@ -75,7 +75,7 @@ def test_graph_ada_gaussian(): @pytest.mark.component_mindarmour def test_graph_factory(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") - grad = Tensor([3, 2, 4], mstype.float32) + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 @@ -102,7 +102,7 @@ def test_graph_factory(): @pytest.mark.component_mindarmour def test_pynative_ada_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") - grad = Tensor([3, 2, 4], mstype.float32) + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 @@ -119,7 +119,7 @@ def test_pynative_ada_gaussian(): @pytest.mark.component_mindarmour def test_pynative_factory(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") - grad = Tensor([3, 2, 4], mstype.float32) + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 @@ -138,3 +138,45 @@ def test_pynative_factory(): decay_policy=decay_policy) ada_noise = ada_noise_construct(grad) print('ada noise: ', ada_noise) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +@pytest.mark.component_mindarmour +def test_pynative_exponential(): + context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) + norm_bound = 1.0 + initial_noise_multiplier = 0.1 + alpha = 0.5 + decay_policy = 'Exp' + ada_mechanism = MechanismsFactory() + ada_noise_construct = ada_mechanism.create('AdaGaussian', + norm_bound, + initial_noise_multiplier, + noise_decay_rate=alpha, + decay_policy=decay_policy) + ada_noise = ada_noise_construct(grad) + print('ada noise: ', ada_noise) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +@pytest.mark.component_mindarmour +def test_graph_exponential(): + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + grad = Tensor([0.3, 0.2, 0.4], mstype.float32) + norm_bound = 1.0 + initial_noise_multiplier = 0.1 + alpha = 0.5 + decay_policy = 'Exp' + ada_mechanism = MechanismsFactory() + ada_noise_construct = ada_mechanism.create('AdaGaussian', + norm_bound, + initial_noise_multiplier, + noise_decay_rate=alpha, + decay_policy=decay_policy) + ada_noise = ada_noise_construct(grad) + print('ada noise: ', ada_noise)