提交 0de5e062 编写于 作者: Z zhenghuanhuan

before rebase, refactor mechanisms implementation.

rename mech._decay_policy to mech._noise_update.

after rebase, rename norm_clip to norm_bound.

change mechanismsfactory to noisemechanismsfactory in test.

11

12

13

1414141414141414141414141414

15
上级 1589a23b
......@@ -32,7 +32,7 @@ mnist_cfg = edict({
'data_path': './MNIST_unzip', # the path of training and testing data set
'dataset_sink_mode': False, # whether deliver all training data to device one time
'micro_batches': 16, # the number of small batches split from an original batch
'norm_clip': 1.0, # the clip bound of the gradients of model's training parameters
'norm_bound': 1.0, # the clip bound of the gradients of model's training parameters
'initial_noise_multiplier': 0.5, # the initial multiplication coefficient of the noise added to training
# parameters' gradients
'noise_mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training
......
......@@ -115,8 +115,9 @@ if __name__ == "__main__":
# or 'AdaGaussian', in which noise would be decayed with 'AdaGaussian'
# mechanism while be constant with 'Gaussian' mechanism.
noise_mech = NoiseMechanismsFactory().create(cfg.noise_mechanisms,
norm_bound=cfg.norm_clip,
initial_noise_multiplier=cfg.initial_noise_multiplier)
norm_bound=cfg.norm_bound,
initial_noise_multiplier=cfg.initial_noise_multiplier,
noise_update='Exp')
# Create a factory class of clip mechanisms, this method is to adaptive clip
# gradients while training, decay_policy support 'Linear' and 'Geometric',
# learning_rate is the learning rate to update clip_norm,
......@@ -136,11 +137,11 @@ if __name__ == "__main__":
rdp_monitor = PrivacyMonitorFactory.create('rdp',
num_samples=60000,
batch_size=cfg.batch_size,
initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.norm_clip,
initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.norm_bound,
per_print_times=10)
# Create the DP model for training.
model = DPModel(micro_batches=cfg.micro_batches,
norm_clip=cfg.norm_clip,
norm_bound=cfg.norm_bound,
noise_mech=noise_mech,
clip_mech=clip_mech,
network=network,
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python lenet5_dp_pynative_mode.py --data_path /YourDataPath --micro_batches=2
python lenet5_dp_pynative_model.py --data_path /YourDataPath --micro_batches=2
"""
import os
......@@ -32,6 +32,7 @@ import mindspore.common.dtype as mstype
from mindarmour.diff_privacy import DPModel
from mindarmour.diff_privacy import PrivacyMonitorFactory
from mindarmour.diff_privacy import DPOptimizerClassFactory
from mindarmour.diff_privacy import ClipMechanismsFactory
from mindarmour.utils.logger import LogUtil
from lenet5_net import LeNet5
from lenet5_config import mnist_cfg as cfg
......@@ -108,21 +109,35 @@ if __name__ == "__main__":
# means that the privacy protection effect is weak. Mechanisms can be 'Gaussian' or 'AdaGaussian', in which noise
# would be decayed with 'AdaGaussian' mechanism while be constant with 'Gaussian' mechanism.
dp_opt = DPOptimizerClassFactory(micro_batches=cfg.micro_batches)
dp_opt.set_mechanisms(cfg.mechanisms,
norm_bound=cfg.norm_clip,
initial_noise_multiplier=cfg.initial_noise_multiplier)
dp_opt.set_mechanisms(cfg.noise_mechanisms,
norm_bound=cfg.norm_bound,
initial_noise_multiplier=cfg.initial_noise_multiplier,
noise_update='Exp')
# Create a factory class of clip mechanisms, this method is to adaptive clip
# gradients while training, decay_policy support 'Linear' and 'Geometric',
# learning_rate is the learning rate to update clip_norm,
# target_unclipped_quantile is the target quantile of norm clip,
# fraction_stddev is the stddev of Gaussian normal which used in
# empirical_fraction, the formula is
# $empirical_fraction + N(0, fraction_stddev)$.
clip_mech = ClipMechanismsFactory().create(cfg.clip_mechanisms,
decay_policy=cfg.clip_decay_policy,
learning_rate=cfg.clip_learning_rate,
target_unclipped_quantile=cfg.target_unclipped_quantile,
fraction_stddev=cfg.fraction_stddev)
net_opt = dp_opt.create('Momentum')(params=network.trainable_params(), learning_rate=cfg.lr, momentum=cfg.momentum)
# Create a monitor for DP training. The function of the monitor is to compute and print the privacy budget(eps
# and delta) while training.
rdp_monitor = PrivacyMonitorFactory.create('rdp',
num_samples=60000,
batch_size=cfg.batch_size,
initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.norm_clip,
initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.norm_bound,
per_print_times=10)
# Create the DP model for training.
model = DPModel(micro_batches=cfg.micro_batches,
norm_clip=cfg.norm_clip,
mech=None,
norm_bound=cfg.norm_bound,
noise_mech=None,
clip_mech=clip_mech,
network=network,
loss_fn=net_loss,
optimizer=net_opt,
......
......@@ -2,7 +2,7 @@
This module provide Differential Privacy feature to protect user privacy.
"""
from .mechanisms.mechanisms import NoiseGaussianRandom
from .mechanisms.mechanisms import AdaGaussianRandom
from .mechanisms.mechanisms import NoiseAdaGaussianRandom
from .mechanisms.mechanisms import AdaClippingWithGaussianRandom
from .mechanisms.mechanisms import NoiseMechanismsFactory
from .mechanisms.mechanisms import ClipMechanismsFactory
......@@ -11,7 +11,7 @@ from .optimizer.optimizer import DPOptimizerClassFactory
from .train.model import DPModel
__all__ = ['NoiseGaussianRandom',
'AdaGaussianRandom',
'NoiseAdaGaussianRandom',
'AdaClippingWithGaussianRandom',
'NoiseMechanismsFactory',
'ClipMechanismsFactory',
......
......@@ -19,6 +19,7 @@ from abc import abstractmethod
from mindspore import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.ops.composite import normal
from mindspore.common.parameter import Parameter
from mindspore.common import dtype as mstype
......@@ -55,7 +56,7 @@ class ClipMechanismsFactory:
Examples:
>>> decay_policy = 'Linear'
>>> beta = Tensor(0.5, mstype.float32)
>>> norm_clip = Tensor(1.0, mstype.float32)
>>> norm_bound = Tensor(1.0, mstype.float32)
>>> beta_stddev = 0.1
>>> learning_rate = 0.1
>>> target_unclipped_quantile = 0.3
......@@ -65,7 +66,7 @@ class ClipMechanismsFactory:
>>> learning_rate=learning_rate,
>>> target_unclipped_quantile=target_unclipped_quantile,
>>> fraction_stddev=beta_stddev)
>>> next_norm_clip = ada_clip(beta, norm_clip)
>>> next_norm_bound = ada_clip(beta, norm_bound)
"""
if mech_name == 'Gaussian':
......@@ -81,25 +82,32 @@ class NoiseMechanismsFactory:
pass
@staticmethod
def create(policy, *args, **kwargs):
def create(mech_name='Gaussian', norm_bound=0.5, initial_noise_multiplier=1.5, seed=0, noise_decay_rate=6e-6,
noise_update=None):
"""
Args:
policy(str): Noise generated strategy, could be 'Gaussian' or
mech_name(str): Noise generated strategy, could be 'Gaussian' or
'AdaGaussian'. Noise would be decayed with 'AdaGaussian' mechanism
while be constant with 'Gaussian' mechanism.
args(Union[float, str]): Parameters used for creating noise
mechanisms.
kwargs(Union[float, str]): Parameters used for creating noise
mechanisms.
norm_bound(float): Clipping bound for the l2 norm of the gradients.
initial_noise_multiplier(float): Ratio of the standard deviation of
Gaussian noise divided by the norm_bound, which will be used to
calculate privacy spent.
seed(int): Original random seed, if seed=0 random normal will use secure
random number. IF seed!=0 random normal will generate values using
given seed.
noise_decay_rate(float): Hyper parameter for controlling the noise decay.
noise_update(str): Mechanisms parameters update policy. Default: None, no
parameters need update.
Raises:
NameError: `policy` must be in ['Gaussian', 'AdaGaussian'].
NameError: `mech_name` must be in ['Gaussian', 'AdaGaussian'].
Returns:
Mechanisms, class of noise generated Mechanism.
Examples:
>>> norm_clip = 1.0
>>> norm_bound = 1.0
>>> initial_noise_multiplier = 0.01
>>> network = LeNet5()
>>> batch_size = 32
......@@ -107,7 +115,7 @@ class NoiseMechanismsFactory:
>>> epochs = 1
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> noise_mech = NoiseMechanismsFactory().create('Gaussian',
>>> norm_bound=norm_clip,
>>> norm_bound=norm_bound,
>>> initial_noise_multiplier=initial_noise_multiplier)
>>> clip_mech = ClipMechanismsFactory().create('Gaussian',
>>> decay_policy='Linear',
......@@ -118,7 +126,7 @@ class NoiseMechanismsFactory:
>>> momentum=0.9)
>>> model = DPModel(micro_batches=2,
>>> clip_mech=clip_mech,
>>> norm_clip=norm_clip,
>>> norm_bound=norm_bound,
>>> noise_mech=noise_mech,
>>> network=network,
>>> loss_fn=loss,
......@@ -129,15 +137,22 @@ class NoiseMechanismsFactory:
>>> ms_ds.set_dataset_size(batch_size * batches)
>>> model.train(epochs, ms_ds, dataset_sink_mode=False)
"""
if policy == 'Gaussian':
return NoiseGaussianRandom(*args, **kwargs)
if policy == 'AdaGaussian':
return AdaGaussianRandom(*args, **kwargs)
if mech_name == 'Gaussian':
return NoiseGaussianRandom(norm_bound=norm_bound,
initial_noise_multiplier=initial_noise_multiplier,
seed=seed,
noise_update=noise_update)
if mech_name == 'AdaGaussian':
return NoiseAdaGaussianRandom(norm_bound=norm_bound,
initial_noise_multiplier=initial_noise_multiplier,
seed=seed,
noise_decay_rate=noise_decay_rate,
noise_update=noise_update)
raise NameError("The {} is not implement, please choose "
"['Gaussian', 'AdaGaussian']".format(policy))
"['Gaussian', 'AdaGaussian']".format(mech_name))
class Mechanisms(Cell):
class _Mechanisms(Cell):
"""
Basic class of noise generated mechanism.
"""
......@@ -149,21 +164,19 @@ class Mechanisms(Cell):
"""
class NoiseGaussianRandom(Mechanisms):
class NoiseGaussianRandom(_Mechanisms):
"""
Gaussian noise generated mechanism.
Args:
norm_bound(float): Clipping bound for the l2 norm of the gradients.
Default: 0.5.
initial_noise_multiplier(float): Ratio of the standard deviation of
Gaussian noise divided by the norm_bound, which will be used to
calculate privacy spent. Default: 1.5.
calculate privacy spent.
seed(int): Original random seed, if seed=0 random normal will use secure
random number. IF seed!=0 random normal will generate values using
given seed. Default: 0.
policy(str): Mechanisms parameters update policy. Default: None, no
parameters need update.
given seed.
noise_update(str): Mechanisms parameters update policy. Default: None.
Returns:
Tensor, generated noise with shape like given gradients.
......@@ -172,24 +185,25 @@ class NoiseGaussianRandom(Mechanisms):
>>> gradients = Tensor([0.2, 0.9], mstype.float32)
>>> norm_bound = 0.5
>>> initial_noise_multiplier = 1.5
>>> net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier)
>>> seed = 0
>>> noise_update = None
>>> net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier, seed, noise_update)
>>> res = net(gradients)
>>> print(res)
"""
def __init__(self, norm_bound=0.5, initial_noise_multiplier=1.5, seed=0,
policy=None):
def __init__(self, norm_bound, initial_noise_multiplier, seed, noise_update=None):
super(NoiseGaussianRandom, self).__init__()
self._norm_bound = check_value_positive('norm_bound', norm_bound)
self._norm_bound = Tensor(norm_bound, mstype.float32)
self._initial_noise_multiplier = check_value_positive(
'initial_noise_multiplier',
self._initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
self._initial_noise_multiplier = Tensor(initial_noise_multiplier,
mstype.float32)
self._initial_noise_multiplier = Tensor(initial_noise_multiplier, mstype.float32)
self._mean = Tensor(0, mstype.float32)
self._normal = P.Normal(seed=seed)
self._decay_policy = policy
if noise_update is not None:
raise ValueError('noise_update must be None in GaussianRandom class, but got {}.'.format(noise_update))
self._noise_update = noise_update
self._seed = seed
def construct(self, gradients):
"""
......@@ -203,26 +217,25 @@ class NoiseGaussianRandom(Mechanisms):
"""
shape = P.Shape()(gradients)
stddev = P.Mul()(self._norm_bound, self._initial_noise_multiplier)
noise = self._normal(shape, self._mean, stddev)
noise = normal(shape, self._mean, stddev, self._seed)
return noise
class AdaGaussianRandom(Mechanisms):
class NoiseAdaGaussianRandom(NoiseGaussianRandom):
"""
Adaptive Gaussian noise generated mechanism. Noise would be decayed with
training. Decay mode could be 'Time' mode or 'Step' mode.
training. Decay mode could be 'Time' mode, 'Step' mode, 'Exp' mode.
Args:
norm_bound(float): Clipping bound for the l2 norm of the gradients.
Default: 1.0.
initial_noise_multiplier(float): Ratio of the standard deviation of
Gaussian noise divided by the norm_bound, which will be used to
calculate privacy spent. Default: 1.5.
calculate privacy spent.
seed(int): Original random seed, if seed=0 random normal will use secure
random number. IF seed!=0 random normal will generate values using
given seed.
noise_decay_rate(float): Hyper parameter for controlling the noise decay.
Default: 6e-4.
decay_policy(str): Noise decay strategy include 'Step' and 'Time'.
Default: 'Time'.
seed(int): Original random seed. Default: 0.
noise_update(str): Noise decay strategy include 'Step', 'Time', 'Exp'.
Returns:
Tensor, generated noise with shape like given gradients.
......@@ -231,56 +244,27 @@ class AdaGaussianRandom(Mechanisms):
>>> gradients = Tensor([0.2, 0.9], mstype.float32)
>>> norm_bound = 1.0
>>> initial_noise_multiplier = 1.5
>>> seed = 0
>>> noise_decay_rate = 6e-4
>>> decay_policy = "Time"
>>> net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
>>> noise_decay_rate, decay_policy)
>>> noise_update = "Time"
>>> net = NoiseAdaGaussianRandom(norm_bound, initial_noise_multiplier, seed, noise_decay_rate, noise_update)
>>> res = net(gradients)
>>> print(res)
"""
def __init__(self, norm_bound=1.0, initial_noise_multiplier=1.5,
noise_decay_rate=6e-4, decay_policy='Time', seed=0):
super(AdaGaussianRandom, self).__init__()
norm_bound = check_value_positive('norm_bound', norm_bound)
initial_noise_multiplier = check_value_positive(
'initial_noise_multiplier',
initial_noise_multiplier)
self._norm_bound = Tensor(norm_bound, mstype.float32)
initial_noise_multiplier = Tensor(initial_noise_multiplier,
mstype.float32)
self._initial_noise_multiplier = Parameter(initial_noise_multiplier,
name='initial_noise_multiplier')
self._noise_multiplier = Parameter(initial_noise_multiplier,
def __init__(self, norm_bound, initial_noise_multiplier, seed, noise_decay_rate, noise_update):
super(NoiseAdaGaussianRandom, self).__init__(norm_bound=norm_bound,
initial_noise_multiplier=initial_noise_multiplier,
seed=seed)
self._noise_multiplier = Parameter(self._initial_noise_multiplier,
name='noise_multiplier')
self._mean = Tensor(0, mstype.float32)
noise_decay_rate = check_param_type('noise_decay_rate',
noise_decay_rate, float)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
self._noise_decay_rate = Tensor(noise_decay_rate, mstype.float32)
if decay_policy not in ['Time', 'Step', 'Exp']:
raise NameError("The decay_policy must be in ['Time', 'Step', 'Exp'], but "
"get {}".format(decay_policy))
self._decay_policy = decay_policy
self._mul = P.Mul()
self._normal = P.Normal(seed=seed)
def construct(self, gradients):
"""
Generate adaptive Gaussian noise.
Args:
gradients(Tensor): The gradients.
Returns:
Tensor, generated noise with shape like given gradients.
"""
shape = P.Shape()(gradients)
noise = self._normal(shape, self._mean,
self._mul(self._noise_multiplier,
self._norm_bound))
return noise
if noise_update not in ['Time', 'Step', 'Exp']:
raise NameError("The noise_update must be in ['Time', 'Step', 'Exp'], but "
"get {}".format(noise_update))
self._noise_update = noise_update
class _MechanismsParamsUpdater(Cell):
......@@ -288,7 +272,7 @@ class _MechanismsParamsUpdater(Cell):
Update mechanisms parameters, the parameters will refresh in train period.
Args:
policy(str): Pass in by the mechanisms class, mechanisms parameters
noise_update(str): Pass in by the mechanisms class, mechanisms parameters
update policy.
decay_rate(Tensor): Pass in by the mechanisms class, hyper parameter for
controlling the decay size.
......@@ -300,9 +284,9 @@ class _MechanismsParamsUpdater(Cell):
Returns:
Tuple, next params value.
"""
def __init__(self, policy, decay_rate, cur_noise_multiplier, init_noise_multiplier):
def __init__(self, noise_update, decay_rate, cur_noise_multiplier, init_noise_multiplier):
super(_MechanismsParamsUpdater, self).__init__()
self._policy = policy
self._noise_update = noise_update
self._decay_rate = decay_rate
self._cur_noise_multiplier = cur_noise_multiplier
self._init_noise_multiplier = init_noise_multiplier
......@@ -322,27 +306,27 @@ class _MechanismsParamsUpdater(Cell):
Returns:
Tuple, next step parameters value.
"""
if self._policy == 'Time':
if self._noise_update == 'Time':
temp = self._div(self._init_noise_multiplier, self._cur_noise_multiplier)
temp = self._add(temp, self._decay_rate)
next_noise_multiplier = self._assign(self._cur_noise_multiplier,
self._div(self._init_noise_multiplier, temp))
elif self._policy == 'Step':
elif self._noise_update == 'Step':
temp = self._sub(self._one, self._decay_rate)
next_noise_multiplier = self._assign(self._cur_noise_multiplier,
self._mul(temp, self._cur_noise_multiplier))
else:
next_noise_multiplier = self._assign(self._cur_noise_multiplier,
self._div(self._one, self._exp(self._one)))
self._div(self._cur_noise_multiplier, self._exp(self._decay_rate)))
return next_noise_multiplier
class AdaClippingWithGaussianRandom(Cell):
"""
Adaptive clipping. If `decay_policy` is 'Linear', the update formula is
$ norm_clip = norm_clip - learning_rate*(beta-target_unclipped_quantile)$.
$ norm_bound = norm_bound - learning_rate*(beta-target_unclipped_quantile)$.
`decay_policy` is 'Geometric', the update formula is
$ norm_clip = norm_clip*exp(-learning_rate*(empirical_fraction-target_unclipped_quantile))$.
$ norm_bound = norm_bound*exp(-learning_rate*(empirical_fraction-target_unclipped_quantile))$.
where beta is the empirical fraction of samples with the value at most
`target_unclipped_quantile`.
......@@ -363,7 +347,7 @@ class AdaClippingWithGaussianRandom(Cell):
Examples:
>>> decay_policy = 'Linear'
>>> beta = Tensor(0.5, mstype.float32)
>>> norm_clip = Tensor(1.0, mstype.float32)
>>> norm_bound = Tensor(1.0, mstype.float32)
>>> beta_stddev = 0.01
>>> learning_rate = 0.001
>>> target_unclipped_quantile = 0.9
......@@ -371,7 +355,7 @@ class AdaClippingWithGaussianRandom(Cell):
>>> learning_rate=learning_rate,
>>> target_unclipped_quantile=target_unclipped_quantile,
>>> fraction_stddev=beta_stddev)
>>> next_norm_clip = ada_clip(beta, norm_clip)
>>> next_norm_bound = ada_clip(beta, norm_bound)
"""
......@@ -400,26 +384,26 @@ class AdaClippingWithGaussianRandom(Cell):
self._sub = P.Sub()
self._mul = P.Mul()
self._exp = P.Exp()
self._normal = P.Normal(seed=seed)
self._seed = seed
def construct(self, empirical_fraction, norm_clip):
def construct(self, empirical_fraction, norm_bound):
"""
Update value of norm_clip.
Update value of norm_bound.
Args:
empirical_fraction(Tensor): empirical fraction of samples with the
value at most `target_unclipped_quantile`.
norm_clip(Tensor): Clipping bound for the l2 norm of the gradients.
norm_bound(Tensor): Clipping bound for the l2 norm of the gradients.
Returns:
Tensor, generated noise with shape like given gradients.
"""
fraction_noise = self._normal((1,), self._zero, self._fraction_stddev)
fraction_noise = normal((1,), self._zero, self._fraction_stddev, self._seed)
empirical_fraction = self._add(empirical_fraction, fraction_noise)
if self._decay_policy == 'Linear':
grad_clip = self._sub(empirical_fraction,
self._target_unclipped_quantile)
next_norm_clip = self._sub(norm_clip,
next_norm_bound = self._sub(norm_bound,
self._mul(self._learning_rate, grad_clip))
# decay_policy == 'Geometric'
......@@ -427,5 +411,5 @@ class AdaClippingWithGaussianRandom(Cell):
grad_clip = self._sub(empirical_fraction,
self._target_unclipped_quantile)
grad_clip = self._exp(self._mul(-self._learning_rate, grad_clip))
next_norm_clip = self._mul(norm_clip, grad_clip)
return next_norm_clip
next_norm_bound = self._mul(norm_bound, grad_clip)
return next_norm_bound
......@@ -127,8 +127,8 @@ class DPOptimizerClassFactory:
self._micro_float = Tensor(micro_batches, mstype.float32)
self._mech_param_updater = None
if self._mech is not None and self._mech._decay_policy is not None:
self._mech_param_updater = _MechanismsParamsUpdater(policy=self._mech._decay_policy,
if self._mech is not None and self._mech._noise_update is not None:
self._mech_param_updater = _MechanismsParamsUpdater(noise_update=self._mech._noise_update,
decay_rate=self._mech._noise_decay_rate,
cur_noise_multiplier=
self._mech._noise_multiplier,
......
......@@ -75,7 +75,7 @@ class DPModel(Model):
Args:
micro_batches (int): The number of small batches split from an original
batch. Default: 2.
norm_clip (float): Use to clip the bound, if set 1, will retun the
norm_bound (float): Use to clip the bound, if set 1, will return the
original data. Default: 1.0.
noise_mech (Mechanisms): The object can generate the different type of
noise. Default: None.
......@@ -83,7 +83,7 @@ class DPModel(Model):
Default: None.
Examples:
>>> norm_clip = 1.0
>>> norm_bound = 1.0
>>> initial_noise_multiplier = 0.01
>>> network = LeNet5()
>>> batch_size = 32
......@@ -93,7 +93,7 @@ class DPModel(Model):
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> factory_opt = DPOptimizerClassFactory(micro_batches=micro_batches)
>>> factory_opt.set_mechanisms('Gaussian',
>>> norm_bound=norm_clip,
>>> norm_bound=norm_bound,
>>> initial_noise_multiplier=initial_noise_multiplier)
>>> net_opt = factory_opt.create('Momentum')(network.trainable_params(),
>>> learning_rate=0.1, momentum=0.9)
......@@ -103,7 +103,7 @@ class DPModel(Model):
>>> target_unclipped_quantile=0.9,
>>> fraction_stddev=0.01)
>>> model = DPModel(micro_batches=micro_batches,
>>> norm_clip=norm_clip,
>>> norm_bound=norm_bound,
>>> clip_mech=clip_mech,
>>> noise_mech=None,
>>> network=network,
......@@ -116,17 +116,18 @@ class DPModel(Model):
>>> model.train(epochs, ms_ds, dataset_sink_mode=False)
"""
def __init__(self, micro_batches=2, norm_clip=1.0, noise_mech=None,
def __init__(self, micro_batches=2, norm_bound=1.0, noise_mech=None,
clip_mech=None, **kwargs):
if micro_batches:
self._micro_batches = check_int_positive('micro_batches',
micro_batches)
else:
self._micro_batches = None
norm_clip = check_param_type('norm_clip', norm_clip, float)
norm_clip = check_value_positive('norm_clip', norm_clip)
norm_clip = Tensor(norm_clip, mstype.float32)
self._norm_clip = Parameter(norm_clip, 'norm_clip')
norm_bound = check_param_type('norm_bound', norm_bound, float)
norm_bound = check_value_positive('norm_bound', norm_bound)
norm_bound = Tensor(norm_bound, mstype.float32)
self._norm_bound = Parameter(norm_bound, 'norm_bound')
if noise_mech is not None and "DPOptimizer" in kwargs['optimizer'].__class__.__name__:
msg = 'DPOptimizer is not supported while noise_mech is not None'
LOGGER.error(TAG, msg)
......@@ -219,14 +220,14 @@ class DPModel(Model):
optimizer,
scale_update_cell=update_cell,
micro_batches=self._micro_batches,
norm_clip=self._norm_clip,
norm_bound=self._norm_bound,
clip_mech=self._clip_mech,
noise_mech=self._noise_mech).set_train()
return network
network = _TrainOneStepCell(network,
optimizer,
self._norm_clip,
self._norm_bound,
loss_scale,
micro_batches=self._micro_batches,
clip_mech=self._clip_mech,
......@@ -347,7 +348,7 @@ class _TrainOneStepWithLossScaleCell(Cell):
Default: None.
micro_batches (int): The number of small batches split from an original
batch. Default: None.
norm_clip (Tensor): Use to clip the bound, if set 1, will return the
norm_bound (Tensor): Use to clip the bound, if set 1, will return the
original data. Default: 1.0.
noise_mech (Mechanisms): The object can generate the different type of
noise. Default: None.
......@@ -366,7 +367,7 @@ class _TrainOneStepWithLossScaleCell(Cell):
"""
def __init__(self, network, optimizer, scale_update_cell=None,
micro_batches=None, norm_clip=1.0, noise_mech=None,
micro_batches=None, norm_bound=1.0, noise_mech=None,
clip_mech=None):
super(_TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False)
self.network = network
......@@ -405,15 +406,13 @@ class _TrainOneStepWithLossScaleCell(Cell):
self.loss_scale = None
self.loss_scaling_manager = scale_update_cell
if scale_update_cell:
self.loss_scale = Parameter(
Tensor(scale_update_cell.get_loss_scale(),
dtype=mstype.float32),
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
name="loss_scale")
self.add_flags(has_effect=True)
# dp params
self._micro_batches = micro_batches
self._norm_clip = norm_clip
self._norm_bound = norm_bound
self._split = P.Split(0, self._micro_batches)
self._clip_by_global_norm = _ClipGradients()
self._noise_mech = noise_mech
......@@ -433,9 +432,9 @@ class _TrainOneStepWithLossScaleCell(Cell):
self._cast = P.Cast()
self._noise_mech_param_updater = None
if self._noise_mech is not None and self._noise_mech._decay_policy is not None:
if self._noise_mech is not None and self._noise_mech._noise_update is not None:
self._noise_mech_param_updater = _MechanismsParamsUpdater(
policy=self._noise_mech._decay_policy,
noise_update=self._noise_mech._noise_update,
decay_rate=self._noise_mech._noise_decay_rate,
cur_noise_multiplier=
self._noise_mech._noise_multiplier,
......@@ -477,10 +476,10 @@ class _TrainOneStepWithLossScaleCell(Cell):
self._reduce_sum(self._square_all(grad)))
norm_grad = self._sqrt(square_sum)
beta = self._add(beta,
self._cast(self._less(norm_grad, self._norm_clip),
self._cast(self._less(norm_grad, self._norm_bound),
mstype.float32))
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE,
self._norm_clip)
self._norm_bound)
grads = record_grad
total_loss = loss
for i in range(1, self._micro_batches):
......@@ -497,12 +496,12 @@ class _TrainOneStepWithLossScaleCell(Cell):
self._reduce_sum(self._square_all(grad)))
norm_grad = self._sqrt(square_sum)
beta = self._add(beta,
self._cast(self._less(norm_grad, self._norm_clip),
self._cast(self._less(norm_grad, self._norm_bound),
mstype.float32))
record_grad = self._clip_by_global_norm(record_grad,
GRADIENT_CLIP_TYPE,
self._norm_clip)
self._norm_bound)
grads = self._tuple_add(grads, record_grad)
total_loss = P.TensorAdd()(total_loss, loss)
loss = P.Div()(total_loss, self._micro_float)
......@@ -552,8 +551,8 @@ class _TrainOneStepWithLossScaleCell(Cell):
ret = (loss, cond, scaling_sens)
if self._clip_mech is not None:
next_norm_clip = self._clip_mech(beta, self._norm_clip)
P.assign(self._norm_clip, next_norm_clip)
next_norm_bound = self._clip_mech(beta, self._norm_bound)
P.assign(self._norm_bound, next_norm_bound)
return F.depend(ret, opt)
......@@ -573,7 +572,7 @@ class _TrainOneStepCell(Cell):
propagation. Default value is 1.0.
micro_batches (int): The number of small batches split from an original
batch. Default: None.
norm_clip (Tensor): Use to clip the bound, if set 1, will return the
norm_bound (Tensor): Use to clip the bound, if set 1, will return the
original data. Default: 1.0.
noise_mech (Mechanisms): The object can generate the different type
of noise. Default: None.
......@@ -586,7 +585,7 @@ class _TrainOneStepCell(Cell):
Tensor, a scalar Tensor with shape :math:`()`.
"""
def __init__(self, network, optimizer, norm_clip=1.0, sens=1.0,
def __init__(self, network, optimizer, norm_bound=1.0, sens=1.0,
micro_batches=None,
noise_mech=None, clip_mech=None):
super(_TrainOneStepCell, self).__init__(auto_prefix=False)
......@@ -616,7 +615,7 @@ class _TrainOneStepCell(Cell):
LOGGER.error(TAG, msg)
raise ValueError(msg)
self._micro_batches = micro_batches
self._norm_clip = norm_clip
self._norm_bound = norm_bound
self._split = P.Split(0, self._micro_batches)
self._clip_by_global_norm = _ClipGradients()
self._noise_mech = noise_mech
......@@ -637,9 +636,9 @@ class _TrainOneStepCell(Cell):
self._micro_float = Tensor(micro_batches, mstype.float32)
self._noise_mech_param_updater = None
if self._noise_mech is not None and self._noise_mech._decay_policy is not None:
if self._noise_mech is not None and self._noise_mech._noise_update is not None:
self._noise_mech_param_updater = _MechanismsParamsUpdater(
policy=self._noise_mech._decay_policy,
noise_update=self._noise_mech._noise_update,
decay_rate=self._noise_mech._noise_decay_rate,
cur_noise_multiplier=
self._noise_mech._noise_multiplier,
......@@ -664,11 +663,11 @@ class _TrainOneStepCell(Cell):
self._reduce_sum(self._square_all(grad)))
norm_grad = self._sqrt(square_sum)
beta = self._add(beta,
self._cast(self._less(norm_grad, self._norm_clip),
self._cast(self._less(norm_grad, self._norm_bound),
mstype.float32))
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE,
self._norm_clip)
self._norm_bound)
grads = record_grad
total_loss = loss
for i in range(1, self._micro_batches):
......@@ -683,12 +682,12 @@ class _TrainOneStepCell(Cell):
self._reduce_sum(self._square_all(grad)))
norm_grad = self._sqrt(square_sum)
beta = self._add(beta,
self._cast(self._less(norm_grad, self._norm_clip),
self._cast(self._less(norm_grad, self._norm_bound),
mstype.float32))
record_grad = self._clip_by_global_norm(record_grad,
GRADIENT_CLIP_TYPE,
self._norm_clip)
self._norm_bound)
grads = self._tuple_add(grads, record_grad)
total_loss = P.TensorAdd()(total_loss, loss)
loss = self._div(total_loss, self._micro_float)
......@@ -712,8 +711,8 @@ class _TrainOneStepCell(Cell):
grads = self.grad_reducer(grads)
if self._clip_mech is not None:
next_norm_clip = self._clip_mech(beta, self._norm_clip)
self._norm_clip = self._assign(self._norm_clip, next_norm_clip)
loss = F.depend(loss, next_norm_clip)
next_norm_bound = self._clip_mech(beta, self._norm_bound)
self._norm_bound = self._assign(self._norm_bound, next_norm_bound)
loss = F.depend(loss, next_norm_bound)
return F.depend(loss, self.optimizer(grads))
......@@ -63,14 +63,14 @@ class ModelCoverageMetrics:
self._model = check_model('model', model, Model)
self._segmented_num = check_int_positive('segmented_num', segmented_num)
self._neuron_num = check_int_positive('neuron_num', neuron_num)
if self._neuron_num > 1e+10:
if self._neuron_num >= 1e+10:
msg = 'neuron_num should be less than 1e+10, otherwise a MemoryError' \
'would occur'
LOGGER.error(TAG, msg)
train_dataset = check_numpy_param('train_dataset', train_dataset)
self._lower_bounds = [np.inf]*neuron_num
self._upper_bounds = [-np.inf]*neuron_num
self._var = [0]*neuron_num
self._lower_bounds = [np.inf]*self._neuron_num
self._upper_bounds = [-np.inf]*self._neuron_num
self._var = [0]*self._neuron_num
self._main_section_hits = [[0 for _ in range(self._segmented_num)] for _ in
range(self._neuron_num)]
self._lower_corner_hits = [0]*self._neuron_num
......
numpy >= 1.17.0
scipy >= 1.3.3
matplotlib >= 3.1.3
matplotlib >= 3.2.1
Pillow >= 2.0.0
pytest >= 4.3.1
wheel >= 0.32.0
......
......@@ -104,7 +104,7 @@ setup(
install_requires=[
'scipy >= 1.3.3',
'numpy >= 1.17.0',
'matplotlib >= 3.1.3',
'matplotlib >= 3.2.1',
'Pillow >= 2.0.0'
],
classifiers=[
......
......@@ -19,8 +19,7 @@ import pytest
from mindspore import context
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindarmour.diff_privacy import NoiseGaussianRandom
from mindarmour.diff_privacy import AdaGaussianRandom
from mindarmour.diff_privacy import NoiseAdaGaussianRandom
from mindarmour.diff_privacy import AdaClippingWithGaussianRandom
from mindarmour.diff_privacy import NoiseMechanismsFactory
from mindarmour.diff_privacy import ClipMechanismsFactory
......@@ -30,71 +29,77 @@ from mindarmour.diff_privacy import ClipMechanismsFactory
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_graph_gaussian():
def test_graph_factory():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier)
res = net(grad)
print(res)
alpha = 0.5
noise_update = 'Step'
factory = NoiseMechanismsFactory()
noise_mech = factory.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_mech(grad)
print('Gaussian noise: ', noise)
ada_noise_mech = factory.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
noise_decay_rate=alpha,
noise_update=noise_update)
ada_noise = ada_noise_mech(grad)
print('ada noise: ', ada_noise)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_pynative_gaussian():
def test_pynative_factory():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier)
res = net(grad)
print(res)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_graph_ada_gaussian():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
noise_decay_rate=alpha, decay_policy=decay_policy)
res = net(grad)
print(res)
noise_update = 'Step'
factory = NoiseMechanismsFactory()
noise_mech = factory.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_mech(grad)
print('Gaussian noise: ', noise)
ada_noise_mech = factory.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
noise_decay_rate=alpha,
noise_update=noise_update)
ada_noise = ada_noise_mech(grad)
print('ada noise: ', ada_noise)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_graph_factory():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def test_pynative_gaussian():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
noise_mechanism = NoiseMechanismsFactory()
noise_construct = noise_mechanism.create('Gaussian',
noise_update = 'Step'
factory = NoiseMechanismsFactory()
noise_mech = factory.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_construct(grad)
noise = noise_mech(grad)
print('Gaussian noise: ', noise)
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
ada_noise_mech = factory.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
noise_decay_rate=alpha,
decay_policy=decay_policy)
ada_noise = ada_noise_construct(grad)
noise_update=noise_update)
ada_noise = ada_noise_mech(grad)
print('ada noise: ', ada_noise)
......@@ -102,16 +107,19 @@ def test_graph_factory():
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_pynative_ada_gaussian():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
def test_graph_ada_gaussian():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
noise_decay_rate=alpha, decay_policy=decay_policy)
res = net(grad)
noise_decay_rate = 0.5
noise_update = 'Step'
ada_noise_mech = NoiseAdaGaussianRandom(norm_bound,
initial_noise_multiplier,
seed=0,
noise_decay_rate=noise_decay_rate,
noise_update=noise_update)
res = ada_noise_mech(grad)
print(res)
......@@ -119,47 +127,40 @@ def test_pynative_ada_gaussian():
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_pynative_factory():
def test_pynative_ada_gaussian():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
noise_mechanism = NoiseMechanismsFactory()
noise_construct = noise_mechanism.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_construct(grad)
print('Gaussian noise: ', noise)
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
noise_decay_rate = 0.5
noise_update = 'Step'
ada_noise_mech = NoiseAdaGaussianRandom(norm_bound,
initial_noise_multiplier,
noise_decay_rate=alpha,
decay_policy=decay_policy)
ada_noise = ada_noise_construct(grad)
print('ada noise: ', ada_noise)
seed=0,
noise_decay_rate=noise_decay_rate,
noise_update=noise_update)
res = ada_noise_mech(grad)
print(res)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_pynative_exponential():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
def test_graph_exponential():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Exp'
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
noise_update = 'Exp'
factory = NoiseMechanismsFactory()
ada_noise = factory.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
noise_decay_rate=alpha,
decay_policy=decay_policy)
ada_noise = ada_noise_construct(grad)
noise_update=noise_update)
ada_noise = ada_noise(grad)
print('ada noise: ', ada_noise)
......@@ -167,20 +168,20 @@ def test_pynative_exponential():
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_graph_exponential():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def test_pynative_exponential():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Exp'
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
noise_update = 'Exp'
factory = NoiseMechanismsFactory()
ada_noise = factory.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
noise_decay_rate=alpha,
decay_policy=decay_policy)
ada_noise = ada_noise_construct(grad)
noise_update=noise_update)
ada_noise = ada_noise(grad)
print('ada noise: ', ada_noise)
......@@ -192,7 +193,7 @@ def test_ada_clip_gaussian_random_pynative():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
norm_bound = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
......@@ -201,8 +202,8 @@ def test_ada_clip_gaussian_random_pynative():
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Liner next norm clip:', next_norm_clip)
next_norm_bound = ada_clip(beta, norm_bound)
print('Liner next norm clip:', next_norm_bound)
decay_policy = 'Geometric'
ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
......@@ -210,8 +211,8 @@ def test_ada_clip_gaussian_random_pynative():
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Geometric next norm clip:', next_norm_clip)
next_norm_bound = ada_clip(beta, norm_bound)
print('Geometric next norm clip:', next_norm_bound)
@pytest.mark.level0
......@@ -222,7 +223,7 @@ def test_ada_clip_gaussian_random_graph():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
norm_bound = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
......@@ -231,8 +232,8 @@ def test_ada_clip_gaussian_random_graph():
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Liner next norm clip:', next_norm_clip)
next_norm_bound = ada_clip(beta, norm_bound)
print('Liner next norm clip:', next_norm_bound)
decay_policy = 'Geometric'
ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
......@@ -240,8 +241,8 @@ def test_ada_clip_gaussian_random_graph():
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Geometric next norm clip:', next_norm_clip)
next_norm_bound = ada_clip(beta, norm_bound)
print('Geometric next norm clip:', next_norm_bound)
@pytest.mark.level0
......@@ -252,18 +253,18 @@ def test_pynative_clip_mech_factory():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
norm_bound = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
clip_mechanism = ClipMechanismsFactory()
ada_clip = clip_mechanism.create('Gaussian',
factory = ClipMechanismsFactory()
ada_clip = factory.create('Gaussian',
decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev)
next_norm_clip = ada_clip(beta, norm_clip)
print('next_norm_clip: ', next_norm_clip)
next_norm_bound = ada_clip(beta, norm_bound)
print('next_norm_bound: ', next_norm_bound)
@pytest.mark.level0
......@@ -274,15 +275,15 @@ def test_graph_clip_mech_factory():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
norm_bound = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
clip_mechanism = ClipMechanismsFactory()
ada_clip = clip_mechanism.create('Gaussian',
factory = ClipMechanismsFactory()
ada_clip = factory.create('Gaussian',
decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev)
next_norm_clip = ada_clip(beta, norm_clip)
print('next_norm_clip: ', next_norm_clip)
next_norm_bound = ada_clip(beta, norm_bound)
print('next_norm_bound: ', next_norm_bound)
......@@ -46,7 +46,7 @@ def dataset_generator(batch_size, batches):
@pytest.mark.component_mindarmour
def test_dp_model_with_pynative_mode():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
norm_clip = 1.0
norm_bound = 1.0
initial_noise_multiplier = 0.01
network = LeNet5()
batch_size = 32
......@@ -56,7 +56,7 @@ def test_dp_model_with_pynative_mode():
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
factory_opt = DPOptimizerClassFactory(micro_batches=micro_batches)
factory_opt.set_mechanisms('Gaussian',
norm_bound=norm_clip,
norm_bound=norm_bound,
initial_noise_multiplier=initial_noise_multiplier)
net_opt = factory_opt.create('Momentum')(network.trainable_params(),
learning_rate=0.1, momentum=0.9)
......@@ -66,7 +66,7 @@ def test_dp_model_with_pynative_mode():
target_unclipped_quantile=0.9,
fraction_stddev=0.01)
model = DPModel(micro_batches=micro_batches,
norm_clip=norm_clip,
norm_bound=norm_bound,
clip_mech=clip_mech,
noise_mech=None,
network=network,
......@@ -86,7 +86,7 @@ def test_dp_model_with_pynative_mode():
@pytest.mark.component_mindarmour
def test_dp_model_with_graph_mode():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
norm_clip = 1.0
norm_bound = 1.0
initial_noise_multiplier = 0.01
network = LeNet5()
batch_size = 32
......@@ -94,7 +94,7 @@ def test_dp_model_with_graph_mode():
epochs = 1
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
noise_mech = NoiseMechanismsFactory().create('Gaussian',
norm_bound=norm_clip,
norm_bound=norm_bound,
initial_noise_multiplier=initial_noise_multiplier)
clip_mech = ClipMechanismsFactory().create('Gaussian',
decay_policy='Linear',
......@@ -105,7 +105,7 @@ def test_dp_model_with_graph_mode():
momentum=0.9)
model = DPModel(micro_batches=2,
clip_mech=clip_mech,
norm_clip=norm_clip,
norm_bound=norm_bound,
noise_mech=noise_mech,
network=network,
loss_fn=loss,
......@@ -124,22 +124,25 @@ def test_dp_model_with_graph_mode():
@pytest.mark.component_mindarmour
def test_dp_model_with_graph_mode_ada_gaussian():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
norm_clip = 1.0
norm_bound = 1.0
initial_noise_multiplier = 0.01
network = LeNet5()
batch_size = 32
batches = 128
epochs = 1
alpha = 0.8
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
noise_mech = NoiseMechanismsFactory().create('AdaGaussian',
norm_bound=norm_clip,
initial_noise_multiplier=initial_noise_multiplier)
norm_bound=norm_bound,
initial_noise_multiplier=initial_noise_multiplier,
noise_decay_rate=alpha,
noise_update='Exp')
clip_mech = None
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1,
momentum=0.9)
model = DPModel(micro_batches=2,
clip_mech=clip_mech,
norm_clip=norm_clip,
norm_bound=norm_bound,
noise_mech=noise_mech,
network=network,
loss_fn=loss,
......
......@@ -34,9 +34,9 @@ def test_optimizer():
momentum = 0.9
micro_batches = 2
loss = nn.SoftmaxCrossEntropyWithLogits()
gaussian_mech = DPOptimizerClassFactory(micro_batches)
gaussian_mech.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
net_opt = gaussian_mech.create('SGD')(params=network.trainable_params(), learning_rate=lr,
factory = DPOptimizerClassFactory(micro_batches)
factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
momentum=momentum)
_ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
......@@ -52,9 +52,9 @@ def test_optimizer_gpu():
momentum = 0.9
micro_batches = 2
loss = nn.SoftmaxCrossEntropyWithLogits()
gaussian_mech = DPOptimizerClassFactory(micro_batches)
gaussian_mech.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
net_opt = gaussian_mech.create('SGD')(params=network.trainable_params(), learning_rate=lr,
factory = DPOptimizerClassFactory(micro_batches)
factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
momentum=momentum)
_ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
......@@ -70,8 +70,8 @@ def test_optimizer_cpu():
momentum = 0.9
micro_batches = 2
loss = nn.SoftmaxCrossEntropyWithLogits()
gaussian_mech = DPOptimizerClassFactory(micro_batches)
gaussian_mech.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
net_opt = gaussian_mech.create('SGD')(params=network.trainable_params(), learning_rate=lr,
factory = DPOptimizerClassFactory(micro_batches)
factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
momentum=momentum)
_ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册