# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Lenet Tutorial""" import os import urllib.request from urllib.parse import urlparse import gzip import argparse import mindspore.dataset as ds import mindspore.nn as nn from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train import Model from mindspore.common.initializer import TruncatedNormal import mindspore.dataset.transforms.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from mindspore.dataset.transforms.vision import Inter from mindspore.nn.metrics import Accuracy from mindspore.common import dtype as mstype from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits def unzipfile(gzip_path): """unzip dataset file Args: gzip_path: dataset file path """ open_file = open(gzip_path.replace('.gz',''), 'wb') gz_file = gzip.GzipFile(gzip_path) open_file.write(gz_file.read()) gz_file.close() def download_dataset(): """Download the dataset from http://yann.lecun.com/exdb/mnist/.""" print("******Downloading the MNIST dataset******") train_path = "./MNIST_Data/train/" test_path = "./MNIST_Data/test/" train_path_check = os.path.exists(train_path) test_path_check = os.path.exists(test_path) if train_path_check == False and test_path_check ==False: os.makedirs(train_path) os.makedirs(test_path) train_url = {"http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz"} test_url = {"http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz"} for url in train_url: url_parse = urlparse(url) # split the file name from url file_name = os.path.join(train_path,url_parse.path.split('/')[-1]) if not os.path.exists(file_name.replace('.gz','')): file = urllib.request.urlretrieve(url, file_name) unzipfile(file_name) os.remove(file_name) for url in test_url: url_parse = urlparse(url) # split the file name from url file_name = os.path.join(test_path,url_parse.path.split('/')[-1]) if not os.path.exists(file_name.replace('.gz','')): file = urllib.request.urlretrieve(url, file_name) unzipfile(file_name) os.remove(file_name) def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): """ create dataset for train or test Args: data_path: Data path batch_size: The number of data records in each group repeat_size: The number of replicated data records num_parallel_workers: The number of parallel workers """ # define dataset mnist_ds = ds.MnistDataset(data_path) # define operation parameters resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 rescale_nml = 1 / 0.3081 shift_nml = -1 * 0.1307 / 0.3081 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Resize images to (32, 32) rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) # normalize images rescale_op = CV.Rescale(rescale, shift) # rescale images hwc2chw_op = CV.HWC2CHW() # change shape from (height, width, channel) to (channel, height, width) to fit network. type_cast_op = C.TypeCast(mstype.int32) # change data type of label to int32 to fit network # apply map operations on images mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """Conv layer weight initial.""" weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): """Fc layer weight initial.""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """Weight initial.""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): """Lenet network structure.""" # define the operator required def __init__(self): super(LeNet5, self).__init__() self.batch_size = 32 self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() # use the preceding operators to construct networks def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x def train_net(args, model, epoch_size, mnist_path, repeat_size, ckpoint_cb): """Define the training method.""" print("============== Starting Training ==============") # load training dataset ds_train = create_dataset(os.path.join(mnist_path, "train"), 32, repeat_size) model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False) def test_net(args, network, model, mnist_path): """Define the evaluation method.""" print("============== Starting Testing ==============") # load the saved model for evaluation param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt") # load parameter to the network load_param_into_net(network, param_dict) # load testing dataset ds_eval = create_dataset(os.path.join(mnist_path, "test")) acc = model.eval(ds_eval, dataset_sink_mode=False) print("============== Accuracy:{} ==============".format(acc)) if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore LeNet Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device where the code will be implemented (default: Ascend)') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False) # download mnist dataset download_dataset() # learning rate setting lr = 0.01 momentum = 0.9 epoch_size = 1 mnist_path = "./MNIST_Data" # define the loss function net_loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') repeat_size = epoch_size # create the network network = LeNet5() # define the optimizer net_opt = nn.Momentum(network.trainable_params(), lr, momentum) config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10) # save the network model and parameters for subsequence fine-tuning ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) # group layers into an object with training and evaluation features model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) train_net(args, model, epoch_size, mnist_path, repeat_size, ckpoint_cb) test_net(args, network, model, mnist_path)