# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ '''cifar_resnet50''' import os import random import argparse import mindspore.nn as nn import mindspore.common.dtype as mstype import mindspore.ops.functional as F import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.c_transforms as C2 from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.communication.management import init from mindspore import Tensor from mindspore.ops import operations as P from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model, ParallelMode from mindspore import context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.parallel._auto_parallel_context import auto_parallel_context from resnet import resnet50 random.seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute.') parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.') parser.add_argument('--batch_size', type=int, default=32, help='Batch size.') parser.add_argument('--num_classes', type=int, default=10, help='Num classes.') parser.add_argument('--checkpoint_path', type=str, default=None, help='CheckPoint file path.') parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar/cifar-10-batches-bin", help='Dataset path.') args_opt = parser.parse_args() device_id = int(os.getenv('DEVICE_ID')) data_home = args_opt.dataset_path context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(enable_task_sink=True, device_id=device_id) context.set_context(enable_loop_sink=False) context.set_context(enable_mem_reuse=False) def create_dataset(repeat_num=1, training=True): """ create data for next use such as training or infering """ cifar_ds = ds.Cifar10Dataset(data_home) if args_opt.run_distribute: rank_id = int(os.getenv('RANK_ID')) rank_size = int(os.getenv('RANK_SIZE')) cifar_ds = ds.Cifar10Dataset(data_home, num_shards=rank_size, shard_id=rank_id) resize_height = 224 resize_width = 224 rescale = 1.0 / 255.0 shift = 0.0 # define map operations random_crop_op = C.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_horizontal_op = C.RandomHorizontalFlip() resize_op = C.Resize((resize_height, resize_width)) # interpolation default BILINEAR rescale_op = C.Rescale(rescale, shift) normalize_op = C.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) changeswap_op = C.HWC2CHW() type_cast_op = C2.TypeCast(mstype.int32) c_trans = [] if training: c_trans = [random_crop_op, random_horizontal_op] c_trans += [resize_op, rescale_op, normalize_op, changeswap_op] # apply map operations on images cifar_ds = cifar_ds.map(input_columns="label", operations=type_cast_op) cifar_ds = cifar_ds.map(input_columns="image", operations=c_trans) # apply repeat operations cifar_ds = cifar_ds.repeat(repeat_num) # apply shuffle operations cifar_ds = cifar_ds.shuffle(buffer_size=10) # apply batch operations cifar_ds = cifar_ds.batch(batch_size=args_opt.batch_size, drop_remainder=True) return cifar_ds if __name__ == '__main__': # in this way by judging the mark of args, users will decide which function to use if args_opt.do_eval: context.set_context(enable_hccl=False) else: if args_opt.run_distribute: context.set_context(enable_hccl=True) context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL) auto_parallel_context().set_all_reduce_fusion_split_indices([140]) init() else: context.set_context(enable_hccl=False) epoch_size = args_opt.epoch_size net = resnet50(args_opt.batch_size, args_opt.num_classes) ls = SoftmaxCrossEntropyWithLogits(sparse=True, is_grad=False, reduction="mean") opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9) model = Model(net, loss_fn=ls, optimizer=opt, metrics={'acc'}) # as for train, users could use model.train if args_opt.do_train: dataset = create_dataset(epoch_size) batch_num = dataset.get_dataset_size() config_ck = CheckpointConfig(save_checkpoint_steps=batch_num, keep_checkpoint_max=35) ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck) loss_cb = LossMonitor() model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb]) # as for evaluation, users could use model.eval if args_opt.do_eval: if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) eval_dataset = create_dataset(1, training=False) res = model.eval(eval_dataset) print("result: ", res)