diff --git a/tutorials/notebook/quick_start.ipynb b/tutorials/notebook/quick_start.ipynb
index da57dbd4aa139f5e2d60a607f98a96e8e2034dfd..558fd5bc0b20632de3236e16cebec89127e90ab4 100644
--- a/tutorials/notebook/quick_start.ipynb
+++ b/tutorials/notebook/quick_start.ipynb
@@ -17,17 +17,17 @@
"\n",
"本例子会实现一个简单的图片分类的功能,整体流程如下:\n",
"\n",
- "1、处理需要的数据集,这里使用了MNIST数据集。\n",
+ "1. 处理需要的数据集,这里使用了MNIST数据集。\n",
"\n",
- "2、定义一个网络,这里我们使用LeNet网络。\n",
+ "2. 定义一个网络,这里我们使用LeNet网络。\n",
"\n",
- "3、定义损失函数和优化器。\n",
+ "3. 定义损失函数和优化器。\n",
"\n",
- "4、加载数据集并进行训练,训练完成后,查看结果及保存模型文件。\n",
+ "4. 加载数据集并进行训练,训练完成后,查看结果及保存模型文件。\n",
"\n",
- "5、加载保存的模型,进行推理。\n",
+ "5. 加载保存的模型,进行推理。\n",
"\n",
- "6、验证模型,加载测试数据集和训练后的模型,验证结果精度。"
+ "6. 验证模型,加载测试数据集和训练后的模型,验证结果精度。"
]
},
{
@@ -41,7 +41,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 一、训练的数据集下载"
+ "## 训练的数据集下载"
]
},
{
@@ -55,9 +55,20 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'C:\\\\Users\\\\Administrator'"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"import os\n",
"os.getcwd()"
@@ -67,7 +78,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "训练数据集放在----Jupyter工作目录+\\MNIST_Data\\train\\,此时train文件夹内应该包含两个文件,train-images-idx3-ubyte和train-labels-idx1-ubyte
测试数据集放在----Jupyter工作目录+\\MNIST_Data\\test\\,此时test文件夹内应该包含两个文件,t10k-images-idx3-ubyte和t10k-labels-idx1-ubyte"
+ "训练数据集放在----`Jupyter工作目录+\\MNIST_Data\\train\\`,此时train文件夹内应该包含两个文件,`train-images-idx3-ubyte`和`train-labels-idx1-ubyte`
测试数据集放在----`Jupyter工作目录+\\MNIST_Data\\test\\`,此时test文件夹内应该包含两个文件,`t10k-images-idx3-ubyte`和`t10k-labels-idx1-ubyte`"
]
},
{
@@ -80,11 +91,18 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "******Downloading the MNIST dataset******\n"
+ ]
+ }
+ ],
"source": [
- "# Network request module, data download module, decompression module\n",
"import urllib.request \n",
"from urllib.parse import urlparse\n",
"import gzip \n",
@@ -144,7 +162,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 二、处理MNIST数据集"
+ "## 处理MNIST数据集"
]
},
{
@@ -170,9 +188,33 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The type of mnist_ds: \n",
+ "Number of pictures contained in the mnist_ds: 60000\n",
+ "The item of mnist_ds: dict_keys(['image', 'label'])\n",
+ "Tensor of image in item: (28, 28, 1)\n",
+ "The label of item: 9\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAEICAYAAACZA4KlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAANdklEQVR4nO3df6wlZX3H8fendF0i0pSVAitQoRRTraGruUUTmpaGiohNgD8kbhqyJKZLIyQ1wUZCm0iampCmQm2sP5ayZWkVIVUCbWiFYhOCNoQLwWURKpSgrLuyNUBFq+uC3/5xh/Zyub/2nDk/7j7vV3Jy5sycOfPdyX7uM2eemfOkqpB06PuZSRcgaTwMu9QIwy41wrBLjTDsUiMMu9QIw65XSfJUkt+ZdB3ql2HX2CV5c5KvJPnvJE8kuWDSNbXAsGtkkvzsEvNuA/4J2ABsBf4+yZvGXF5zDPsa0h1efzjJzq5VvDnJ4UkuTnLvgvdWkl/upm9I8qkk/5zkB0m+muS4JH+Z5LkkjyV524LN/XqSb3TL/zbJ4fM++3eTPJTk+SRfS3Lagho/kmQn8MNFAv8rwBuAa6vqpar6CvBV4KIed5UWYdjXnguBc4CTgdOAiw9ivT8Bjgb2A/8OPNi9/gfgmgXv/z3g3cApwJu6dUnydmA7cAnweuCzwO1J1s9bdzPwXuDnq+rF7g/Np7plWaS2AG9d5b9DAzLsa89fVdWeqnoW+Edg0yrXu7WqHqiqHwO3Aj+uqhur6iXgZmBhy/7Jqnq6287HmAswwO8Dn62q+7qWeQdzfzzeuaDGp6vqRwBV9cGq+mC37DFgH/BHSdYlORv4LeC1B7MTdPAM+9rz3XnT/wO8bpXrPTNv+keLvF74OU/Pm/4Wc4feAG8ELu8O4Z9P8jxw4rzlC9d9hao6AJzPXMv/XeBy4BZg9yr/HRrQq06gaE36IfNaxiTH9fCZJ86b/kVgTzf9NPCxqvrYMusueytlVe1krjUHIMnXgB0D1qlVsmU/NHwd+NUkm7oTaVf18JmXJjkhyQbgSuYO9QGuA/4gyTsy54gk701y5Go/OMlp3YnF1yb5MLARuKGHmrUMw34IqKpvAn8K/CvwOHDv8musyueBO4Enu8efdduaZe57+yeB54AnWOEkYZLPJPnMvFkXAXuZ++5+FvCuqtrfQ81aRvzxCqkNtuxSIwy71AjDLjXCsEuNGGs/+2uyvg7niHFuUmrKj/khP6n9i12SPFzYk5wDfAI4DPibqrp6ufcfzhG8I2cNs0lJy7iv7l5y2cCH8UkOA/4aeA/wFmBzkrcM+nmSRmuY7+ynA09U1ZNV9RPgC8B5/ZQlqW/DhP14XnnDw+5u3isk2ZpkNsnsAbxISpqUYcK+2EmAV12OV1XbqmqmqmbWsX6RVSSNwzBh380r74w6gf+/M0rSlBkm7PcDpyY5OclrgPcDt/dTlqS+Ddz11v3c0GXAl5nretteVY/0VpmkXg3Vz15VdwB39FSLpBHyclmpEYZdaoRhlxph2KVGGHapEYZdaoRhlxph2KVGGHapEYZdaoRhlxph2KVGGHapEYZdaoRhlxph2KVGGHapEYZdaoRhlxph2KVGGHapEYZdaoRhlxph2KVGGHapEYZdaoRhlxph2KVGGHapEYZdasRQQzYneQp4AXgJeLGqZvooSlL/hgp757er6ns9fI6kEfIwXmrEsGEv4M4kDyTZutgbkmxNMptk9gD7h9ycpEENexh/RlXtSXIMcFeSx6rqnvlvqKptwDaAn8uGGnJ7kgY0VMteVXu6533ArcDpfRQlqX8Dhz3JEUmOfHkaOBvY1Vdhkvo1zGH8scCtSV7+nM9X1b/0UpWk3g0c9qp6Evi1HmuRNEJ2vUmNMOxSIwy71AjDLjXCsEuN6ONGGB3CvrznoUmXMLB3v2HTpEuYKrbsUiMMu9QIwy41wrBLjTDsUiMMu9QIwy41wn72Q9xa7idXv2zZpUYYdqkRhl1qhGGXGmHYpUYYdqkRhl1qhP3shwD70rUatuxSIwy71AjDLjXCsEuNMOxSIwy71AjDLjXCfvY1wH509WHFlj3J9iT7kuyaN29DkruSPN49HzXaMiUNazWH8TcA5yyYdwVwd1WdCtzdvZY0xVYMe1XdAzy7YPZ5wI5uegdwfs91SerZoCfojq2qvQDd8zFLvTHJ1iSzSWYPsH/AzUka1sjPxlfVtqqaqaqZdawf9eYkLWHQsD+TZCNA97yvv5IkjcKgYb8d2NJNbwFu66ccSaOyYj97kpuAM4Gjk+wGPgpcDdyS5APAt4H3jbLIQ90k+9EnOYa51w+M14phr6rNSyw6q+daJI2Ql8tKjTDsUiMMu9QIwy41wrBLjfAW1zFotWsN7F6bJrbsUiMMu9QIwy41wrBLjTDsUiMMu9QIwy41wn72Q8Ck+9K1NtiyS40w7FIjDLvUCMMuNcKwS40w7FIjDLvUCPvZe+A921oLbNmlRhh2qRGGXWqEYZcaYdilRhh2qRGGXWqE/exrgPerL879cnBWbNmTbE+yL8muefOuSvKdJA91j3NHW6akYa3mMP4G4JxF5l9bVZu6xx39liWpbyuGvaruAZ4dQy2SRmiYE3SXJdnZHeYftdSbkmxNMptk9gD7h9icpGEMGvZPA6cAm4C9wMeXemNVbauqmaqaWcf6ATcnaVgDhb2qnqmql6rqp8B1wOn9liWpbwOFPcnGeS8vAHYt9V5J02HFfvYkNwFnAkcn2Q18FDgzySaggKeAS0ZYo6aY9/KvHSuGvao2LzL7+hHUImmEvFxWaoRhlxph2KVGGHapEYZdaoS3uK4BK3VvDXOrp11n7bBllxph2KVGGHapEYZdaoRhlxph2KVGGHapEfaz92Clfu5R92Ufqn3l/lR0v2zZpUYYdqkRhl1qhGGXGmHYpUYYdqkRhl1qhP3sYzDpfngJbNmlZhh2qRGGXWqEYZcaYdilRhh2qRGGXWrEaoZsPhG4ETgO+Cmwrao+kWQDcDNwEnPDNl9YVc+NrtRD11q+b9trBNaO1bTsLwKXV9WbgXcClyZ5C3AFcHdVnQrc3b2WNKVWDHtV7a2qB7vpF4BHgeOB84Ad3dt2AOePqkhJwzuo7+xJTgLeBtwHHFtVe2HuDwJwTN/FSerPqsOe5HXAF4EPVdX3D2K9rUlmk8weYP8gNUrqwarCnmQdc0H/XFV9qZv9TJKN3fKNwL7F1q2qbVU1U1Uz61jfR82SBrBi2JMEuB54tKqumbfodmBLN70FuK3/8iT1ZTW3uJ4BXAQ8nOTlfpYrgauBW5J8APg28L7RlCipDyuGvaruBbLE4rP6LUfSqHgFndQIwy41wrBLjTDsUiMMu9QIwy41wrBLjTDsUiMMu9QIwy41wrBLjTDsUiMMu9QIwy41wiGbNTFr+Se01yJbdqkRhl1qhGGXGmHYpUYYdqkRhl1qhGGXGmHYpUYYdqkRhl1qhGGXGmHYpUYYdqkRhl1qhGGXGrFi2JOcmOTfkjya5JEkf9jNvyrJd5I81D3OHX25kga1mh+veBG4vKoeTHIk8ECSu7pl11bVX4yuPEl9WTHsVbUX2NtNv5DkUeD4URcmqV8H9Z09yUnA24D7ulmXJdmZZHuSo5ZYZ2uS2SSzB9g/VLGSBrfqsCd5HfBF4ENV9X3g08ApwCbmWv6PL7ZeVW2rqpmqmlnH+h5KljSIVYU9yTrmgv65qvoSQFU9U1UvVdVPgeuA00dXpqRhreZsfIDrgUer6pp58zfOe9sFwK7+y5PUl9WcjT8DuAh4OMlD3bwrgc1JNgEFPAVcMpIKJfViNWfj7wWyyKI7+i9H0qh4BZ3UCMMuNcKwS40w7FIjDLvUCMMuNcIhmzUUh11eO2zZpUYYdqkRhl1qhGGXGmHYpUYYdqkRhl1qRKpqfBtL/gv41rxZRwPfG1sBB2daa5vWusDaBtVnbW+sql9YbMFYw/6qjSezVTUzsQKWMa21TWtdYG2DGldtHsZLjTDsUiMmHfZtE97+cqa1tmmtC6xtUGOpbaLf2SWNz6RbdkljYtilRkwk7EnOSfIfSZ5IcsUkalhKkqeSPNwNQz074Vq2J9mXZNe8eRuS3JXk8e550TH2JlTbVAzjvcww4xPdd5Me/nzs39mTHAZ8E3gXsBu4H9hcVd8YayFLSPIUMFNVE78AI8lvAj8Abqyqt3bz/hx4tqqu7v5QHlVVH5mS2q4CfjDpYby70Yo2zh9mHDgfuJgJ7rtl6rqQMey3SbTspwNPVNWTVfUT4AvAeROoY+pV1T3Aswtmnwfs6KZ3MPefZeyWqG0qVNXeqnqwm34BeHmY8Ynuu2XqGotJhP144Ol5r3czXeO9F3BnkgeSbJ10MYs4tqr2wtx/HuCYCdez0IrDeI/TgmHGp2bfDTL8+bAmEfbFhpKapv6/M6rq7cB7gEu7w1WtzqqG8R6XRYYZnwqDDn8+rEmEfTdw4rzXJwB7JlDHoqpqT/e8D7iV6RuK+pmXR9DtnvdNuJ7/M03DeC82zDhTsO8mOfz5JMJ+P3BqkpOTvAZ4P3D7BOp4lSRHdCdOSHIEcDbTNxT17cCWbnoLcNsEa3mFaRnGe6lhxpnwvpv48OdVNfYHcC5zZ+T/E/jjSdSwRF2/BHy9ezwy6dqAm5g7rDvA3BHRB4DXA3cDj3fPG6aotr8DHgZ2MhesjROq7TeY+2q4E3ioe5w76X23TF1j2W9eLis1wivopEYYdqkRhl1qhGGXGmHYpUYYdqkRhl1qxP8CnmgwF585kCIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "