diff --git a/tutorials/notebook/README.md b/tutorials/notebook/README.md
index f8b3fd991d6a5613981ba57e3a43686076d4b76e..3613ac7a407f6a798d646def9c5fbc407c114177 100644
--- a/tutorials/notebook/README.md
+++ b/tutorials/notebook/README.md
@@ -54,4 +54,6 @@
| [debugging_in_pynative_mode.ipynb](./debugging_in_pynative_mode.ipynb) | - GPU平台下从数据集获取单个数据进行单个step训练的数据变化全过程解读
- 了解PyNative模式下的调试方法
- 图片数据在训练过程中的变化情况的图形展示
- 了解构建权重梯度计算函数的方法
- 展示1个step过程中权重的变化及数据展示
| [mindinsight_model_lineage_and_data_lineage.ipynb](./mindinsight/debugging_in_pynative_mode.ipynb) | - 了解MindSpore中训练数据的采集及展示
- 学习使用SummaryRecord记录数据
- 学习使用回调函数SummaryCollector进行数据采集
- 使用MindInsight进行数据可视化
- 了解数据溯源和模型溯源的使用方法
| [calculate_and_datagraphic.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/mindinsight/calculate_and_datagraphic.ipynb) | - 了解MindSpore中新增可视化功能
- 学习使用MindInsight可视化看板
- 学习使用查看计算图可视化图的信息的方法
- 学习使用查看数据图中展示的信息的方法
-| [data_loading_enhancement.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/data_loading_enhance/data_loading_enhancement.ipynb) | - 学习MindSpore中数据处理和增强的方法
- 展示数据处理、增强方法的实际操作
- 对比展示数据处理前和处理后的效果
- 表述在数据处理、增强后的意义
\ No newline at end of file
+| [data_loading_enhancement.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/data_loading_enhance/data_loading_enhancement.ipynb) | - 学习MindSpore中数据处理和增强的方法
- 展示数据处理、增强方法的实际操作
- 对比展示数据处理前和处理后的效果
- 表述在数据处理、增强后的意义
+| [loading_dataset.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/loading_dataset.ipynb) | - 学习MindSpore中加载数据集的方法
- 展示加载常用数据集的方法
- 展示加载MindRecord格式数据集的方法
- 展示加载自定义格式数据集的方法
+| [nlp_application.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/nlp_application.ipynb) | - 展示MindSpore在自然语言处理的应用
- 展示自然语言处理中数据集特定的预处理方法
- 展示如何定义基于LSTM的SentimentNet网络
diff --git a/tutorials/notebook/loading_dataset.ipynb b/tutorials/notebook/loading_dataset.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d1865e5fd7e5ef2a2db65bae5fc165cfc6feec09
--- /dev/null
+++ b/tutorials/notebook/loading_dataset.ipynb
@@ -0,0 +1,620 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 加载数据集\n",
+ "\n",
+ "## 概述\n",
+ "\n",
+ "MindSpore可以帮助你加载常见的数据集、特定数据格式的数据集或自定义的数据集。加载数据集时,需先导入所需要依赖的库`mindspore.dataset`。\n",
+ "\n",
+ "接下来,以加载数常用数据集(CIFAR-10数据集)、特定格式数据集以及自定义数据集为例来体验MindSpore加载数据集操作。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 整体流程\n",
+ "\n",
+ "1. 准备环节。下载本次体验流程所需的数据集。\n",
+ "2. 加载常用数据集并输出结果,以CIFAR-10二进制数据集为例。\n",
+ "3. 加载特定格式数据集并输出结果,以MindRecord格式数据集为例。\n",
+ "4. 加载自定义数据集并输出结果。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 准备环节\n",
+ "\n",
+ "### 导入`mindspore.dataset`模块"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import mindspore.dataset as ds"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 下载所需数据集\n",
+ "\n",
+ "1. 在当前`notebook`工作目录创建`./datasets/cifar-10`目录,用于存放数据集。\n",
+ "2. 在当前`notebook`工作目录创建`./datasets/mindrecord`目录,用于后续存放转换后的MindRecord格式数据集文件。\n",
+ "3. 下载[CIFAR-10二进制格式数据集](https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz),并将数据集文件解压到`./datasets/cifar-10/cifar-10-batches-bin`目录下。\n",
+ "4. 下载数据集[CIFAR-10 Python文件格式数据集](http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz),并将数据集文件解压到`./datasets/cifar-10/cifar-10-batches-py`目录下。\n",
+ "\n",
+ " 此时当前`notebook`工作目录下`datasets`目录结构为:\n",
+ "\n",
+ " ```shell\n",
+ " $ tree datasets\n",
+ " datasets\n",
+ " ├── cifar-10\n",
+ " │ ├── cifar-10-batches-bin\n",
+ " │ │ ├── batches.meta.txt\n",
+ " │ │ ├── data_batch_1.bin\n",
+ " │ │ ├── data_batch_2.bin\n",
+ " │ │ ├── data_batch_3.bin\n",
+ " │ │ ├── data_batch_4.bin\n",
+ " │ │ ├── data_batch_5.bin\n",
+ " │ │ ├── readme.html\n",
+ " │ │ └── test_batch.bin\n",
+ " │ └── cifar-10-batches-py\n",
+ " │ ├── batches.meta\n",
+ " │ ├── data_batch_1\n",
+ " │ ├── data_batch_2\n",
+ " │ ├── data_batch_3\n",
+ " │ ├── data_batch_4\n",
+ " │ ├── data_batch_5\n",
+ " │ ├── readme.html\n",
+ " │ └── test_batch\n",
+ " └── mindrecord\n",
+ " ```\n",
+ "\n",
+ " 其中:\n",
+ " - `cifar-10-batches-bin`目录为CIFAR-10二进制格式数据集目录。\n",
+ " - `cifar-10-batches-py`目录为CIFAR-10 Python文件格式数据集目录。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 加载常见的数据集\n",
+ "\n",
+ "MindSpore可以加载常见的标准数据集。支持的数据集如下表:\n",
+ "\n",
+ "| 数据集: | 简要说明 |\n",
+ "| :---------: | :-------------:|\n",
+ "| ImageNet | ImageNet是根据WordNet层次结构组织的图像数据库,其中层次结构的每个节点都由成百上千个图像表示。 |\n",
+ "| MNIST | 是一个手写数字图像的大型数据库,通常用于训练各种图像处理系统。 |\n",
+ "| CIFAR-10 | 常用于训练图像的采集机器学习和计算机视觉算法。CIFAR-10数据集包含10种不同类别的60,000张32x32彩色图像。 |\n",
+ "| CIFAR-100 | 该数据集类似于CIFAR-10,不同之处在于它有100个类别,每个类别包含600张图像:500张训练图像和100张测试图像。|\n",
+ "| PASCAL-VOC | 数据内容多样,可用于训练计算机视觉模型(分类、定位、检测、分割、动作识别等)。|\n",
+ "| CelebA | CelebA人脸数据集包含上万个名人身份的人脸图片,每张图片有40个特征标记,常用于人脸相关的训练任务。 |\n",
+ "\n",
+ "加载常见数据集的详细步骤如下,以创建`CIFAR-10`对象为例,用于加载支持的数据集。\n",
+ "\n",
+ "1. 使用二进制格式的数据集(CIFAR-10 binary version),配置数据集目录,定义需要加载的数据集实例。"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "DATA_DIR = \"./datasets/cifar-10/cifar-10-batches-bin\"\n",
+ "cifar10_dataset = ds.Cifar10Dataset(DATA_DIR)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "2. 创建迭代器,通过迭代器读取数据。此处读取前2个图像及其标签。"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The data of image 1 is below:\n",
+ "[[[179 147 140]\n",
+ " [173 148 138]\n",
+ " [131 108 98]\n",
+ " ...\n",
+ " [129 90 77]\n",
+ " [167 140 124]\n",
+ " [188 172 154]]\n",
+ "\n",
+ " [[177 156 131]\n",
+ " [182 167 142]\n",
+ " [120 108 85]\n",
+ " ...\n",
+ " [156 142 130]\n",
+ " [199 171 159]\n",
+ " [174 126 106]]\n",
+ "\n",
+ " [[145 129 103]\n",
+ " [128 107 81]\n",
+ " [166 144 118]\n",
+ " ...\n",
+ " [145 129 115]\n",
+ " [138 94 72]\n",
+ " [179 108 84]]\n",
+ "\n",
+ " ...\n",
+ "\n",
+ " [[123 135 91]\n",
+ " [134 146 101]\n",
+ " [113 123 86]\n",
+ " ...\n",
+ " [117 106 79]\n",
+ " [ 87 81 67]\n",
+ " [ 80 80 56]]\n",
+ "\n",
+ " [[148 159 114]\n",
+ " [135 146 103]\n",
+ " [125 135 97]\n",
+ " ...\n",
+ " [150 137 93]\n",
+ " [123 116 88]\n",
+ " [124 120 93]]\n",
+ "\n",
+ " [[150 162 102]\n",
+ " [160 171 115]\n",
+ " [132 141 97]\n",
+ " ...\n",
+ " [139 126 79]\n",
+ " [113 100 84]\n",
+ " [ 98 83 72]]]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZEklEQVR4nO2dW2yc6V3Gn3eOnvOMPWN7bCexE8fZxMlumu0hadm2KqUUUQRtpQoQQqpEVXGDRC9A3HC6QCCBQIgLEBdc0AtECypdoAeWtkv3mD002Rw2J8dnO7bH9njGcz58XMQrrOp9PgRtN+9Wz++m6fvPO/PNN98z7+Z93v//bzzPgxDCPQKP+gKEEHYkTiEcReIUwlEkTiEcReIUwlEkTiEcReJ8RBhjbhhjPvyor0O4i8T5iPA8b9bzvO886ut4C2NMxBjzZWPMgjHG0w/Ho0fiFId5DsCvAHjwqC9ESJyPjIMV6qPGmN83xnzJGPNFY0zVGHPNGDNjjPkdY8ymMWbZGPOxQ/M+a4x58+Dv3jfGfP77Xve3jDHrxpg1Y8yvHayC0wexqDHmT40xS8aYDWPMXxtjYgDgeV7b87y/8DzvOQC9t/VmCCsSpxv8HIC/B5AD8D0A38DD72YcwB8C+JtDf3cTwCcApAF8FsCfG2MuAIAx5uMAvgDgowCmAXzo+97nTwDMADh/EB8H8Ls/ig8kfnAkTjf4rud53/A8rwvgSwAKAP7Y87wOgH8AMGmMyQKA53n/5nnenPeQZwF8E8BTB6/zGQB/53neDc/z6gD+4K03MMYYAJ8D8Jue5+14nlcF8EcAfvFt+ozi/0joUV+AAABsHPpzA0DJ87zeof8PAEkAZWPMzwD4PTxcAQMA4gCuHfydMQCvHnqt5UN/Lhz83dce6hQAYAAEf0ifQfyQkTjfQRhjogD+CcCvAvgXz/M6xpiv4KHIAGAdwMShKUcO/bmEh0Kf9Txv9W24XPEDov+sfWcRARAFsAWge7CKfuxQ/B8BfNYYc9oYE8ehf096ntcH8Ld4+G/UYQAwxowbY376rb9zsGE08NZ7GWMGzKFlVry9SJzvIA7+nfgbeCjCXQC/DOCrh+JfA/CXAL4N4B6AFw9CrYP//e2D8ZeMMRUAzwA4degtbuPh6jqOh5tSDQDHfkQfR/wvGCVb//hijDkN4DqA6MFmk3gHoZXzxwxjzCcPTvvk8NA6eVrCfGcicf748Xk8/DfpHB4eJvj1R3s54v+L/rNWCEfRyimEo/j6nP/6V39Gl9W26dN5N2/dso6nB/lvQTYSobF6o0Nju60mjd24edseMNx3v/jeMzQWRJvGKrt7PLZXp7F6xX6LO42GdRwAMqkajY3GkjQWSmRprByx3+PBbIHOGQjw76xV5dfY68Vo7F0f/4R1/M7NK3TO2hy3bXeX79DY6ZkZGkN/gIaWVu3vN3PhCTqnMHmUxn7y05+z2lVaOYVwFIlTCEeROIVwFIlTCEeROIVwFIlTCEfxtVL6Mb6dH0skaKyGqnX8qZ/9/sT8/yEei9LY17/4LRrrdXjSxKmzs9bxWqlC53T3uV3S6Nk/FwBkBjM01mpxK6jft7/mqZkj1nEA2Jov0dj63BaNjZ7h1xgdsNsbjRL/zLHcGI3V9/ZpLBDh9ldu0P4cGMPvYaPKTydGk3kai01M0Fizz9et8aL9c08e4d/Z+huv0Bg+bR/WyimEo0icQjiKxCmEo0icQjiKxCmEo0icQjiKr5WysLpCY7ubmzT2+MmT1vFkj5/0/+Yzr9LY1//rNRr7yIV301i+YLcHSkvL1nEA2OpwCyAU47mv7TC3dNo+d3n05Ih1PBjmWT+5kRSNZQL8GqN5ng2SSaWt4+km/85eu36PxkyA/+6/9+JZGouE7J87TGcAsRjPMhqbOEFj4Sy3llKpURq7d/WKdfy7T79A55xO82whhlZOIRxF4hTCUSROIRxF4hTCUSROIRzFd7e21+HhyeJjNPbyc9es4y9cfp3OmV/dpbF0yL6TCAAeeH2eWCpnHb/0U++jc7IxvkuXzNpfDwC8ID98HQ7xHc9I0r7z2u7wz7Ux9yaNlebs9ZsAoN7jO9ER8n7lfT5nZDTLXy/O6wvt1HzqC3lx63gyN0znmMg6ja084K7CR951icYWbvCd6P49+25/fYc/w3f3eQIBQyunEI4icQrhKBKnEI4icQrhKBKnEI4icQrhKL5WSnGEl+K/+tINHrt90zo+MckPbBcHuU1x5uw5GpuZtR8cB4BE1l7nKBji9Y+uvzZHY63bd2ksn+XWwf4er+sTHxq0jg8VjtM5wwluYx25dIHGtnYWaGxz3v597jTX6JxcbojGPJ+f/UaH1wMKhuxH3EfHinTOrWvcWpqe5PcqNsCfg3u3uSU1f93+jAzwRwCNPq9bxdDKKYSjSJxCOIrEKYSjSJxCOIrEKYSjSJxCOIqvlbK9ycv+v/IqzzAZnbRnFgzl+dZ1KsFtlqlpbpesLi/R2O4Vuw2QG+KvN/fmPI0N8EQRlPo9Gmv6ZM4MFu33xKvwbs3Xb3FrJjl4isaKx6do7PRZe6ZO/wley2i7skNj6yu8o3Snye9Hh3QPL4zzVgejxyZpbPYcvx8bW7xGVjfK7Z7cmWPW8U6dZ9uEu7y1CUMrpxCOInEK4SgSpxCOInEK4SgSpxCOInEK4Si+VsrcnUUaGynygkuZnL08fqfNt6eLMzwr5dWXX6Sx7QVu94zn7ZbOTpu3YxjM8A7b9fVtGssWeJfnzDRvCdDt27ffo31uO42keOuHRoVfY2WR2yKXl+wW0vkPfZjOmZ7ln2tsgneUvvHmFRpr9uzXmBsdp3Mefx8v2Gaa/H5EB/Zo7PT7+PfZatmvsVrjFtEIKTbnh1ZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlPIWL0o0PGIvTAUAraC9v0YunaVzokHeuzgd4vZGNM4LP0XI1najx7e8x07w18tdnKCxWJJbBzWPW0hDKbsdEfLpU5PI8A7Vt32ydLo+3aYHPfv7BUr8Xl2+8S0amzrGu0ZPZHjhuHrJnumyFeD9UCaO8u9s+RbPjql0eebP3AN7kToASAXsvW+OTvGsn063SWMMrZxCOIrEKYSjSJxCOIrEKYSjSJxCOIrvbm2sz3cZExG+u2rC9kO+tTLf+Vu89YDGZqftNVsA4PxTF2lsecVepn9t+z6d88R7eM2ZW0s+RYS6vAZSa5XX/Fkv2Tsv58d5h+2BJO+UHQ7Zkw4AIJ3P0li3Zt9N/M+v/jOdU6ryrtFbp/h3Fkzxa8wcse/Wno3zR7U+wHdd37h9hcbuLi7QWNe0aCw9RJ7vfa6XzT1+rxhaOYVwFIlTCEeROIVwFIlTCEeROIVwFIlTCEfxtVI8fr4aL16+QmNNMnGIdJoGgOMnec2WZ7/HDyHvtjwae/yc/VD5xAg/SL+8VaWxnU0ei6Z4l+dz73k3jc0t2VsCLO7wpIOAx2sIpeq7NIYGbxmRmbIf6o8ucNtme8GnHcPr/DqCGf6aHyjYawU1G9ymeObpb9DYKy9fo7FQNE1j+TH+rLaa9hpC9SZ/Fls+956hlVMIR5E4hXAUiVMIR5E4hXAUiVMIR5E4hXAUXytly/DsgUqIl/aPhOxbyv0In3N/lde+KVe5rZAeidDYBUza5+zzj92s8WybWJdvld9fuUdjuw1uwVx87yXreMun5szNV75LY8Ynm2Isxi2M6n37/Z+dfZzOiRd4h3D0ujT0+hyv6xMI2+2N55+/Tue88B88ZgL2TtkAkMrx72V/gXepHi3an5FMjK91Zp8/OwytnEI4isQphKNInEI4isQphKNInEI4isQphKP4WimNPt9qLh7hWRiJYNI6XqvxLIZ4yqflgk/Gx4kTvLR/eXPN/noN+/UBwPo6z6bo9+xtJgDgxMkZGtva4bbC9cvPWccvXuIWxnvef4HGrnz7eRrb2eCFsKJB+6Owt8MLU03keRGyqemzNJYgmScAsN+z2xQLPlZV3ecpjsf4Nc6v8e86kea2X6W9YR1f3+Bd1s+cOkpjDK2cQjiKxCmEo0icQjiKxCmEo0icQjiKxCmEo/haKZ/8ed43ZHOLZz8MDtp7SXR7vMiR6fPfif0uzywIxHx6aOyUrePBPt8mz6S5bbNR5p85HOJFt548z22RN77zHev4s1/7Op3zxAd4f5jx49M0VtrhVlAsEbeOdzZ5tlC1wq2xvuHfdTLKK8ddfuOqdTyb59lHJ05O0tjONs9oOnOGz2s2uY24vWvvmVOvNeicqQ5/PhhaOYVwFIlTCEeROIVwFIlTCEeROIVwFIlTCEfxtVJCYW4dpJJ86rHj9j4ThtfOwuYq35bvNXlWR7/PryMRt2ckZONFOifq8d+rwhGeAbNZXqax/Rb/bDOXPmgdX7zN+8N873VeICtk7JYIAFxdsGfpAMDZ82es49PHH6Nz0lVeBGuvzC2MRmmbxqZG8tbxOnjGR23PniUCAGNjWRorjvN7tV/nBbniW/Z5Xps/O8vL6zTG0MophKNInEI4isQphKNInEI4isQphKP47tZ2+vywbrfJd3Iru/a6M90wPwzd7vAd2WaDv1e7zg8bd6PHrOOtQIrO6ff561W2ec2ZdIzv7gUD9oPSALDXH7SOHzvH6wRt3+f1dEorfJe0uc8P/G/v2A96jyf5jmY8MUxjwSBv5TFZ4Pcq0itbx+/u8PpHQ4P8+8zmeL2oSmOPX0eCWwtJkjixt8G7b+dyWRpjaOUUwlEkTiEcReIUwlEkTiEcReIUwlEkTiEcxddKabd8rJQ2txwCnn1ru9PgnZVTcb4d3u7yg9L9NrdZdjZWSMR+MB8Ajs6epjEscXsg2OBb/c/++1dp7NiTn7KOT80coXMGjvIWA+0+b2vxiTO8ZURh2F73KR7nj8jWHn8Gjg7xJIHK/Vs0dvO2vUt1PMevwwtnaazR4tfYD3JLZyjJXzOesVtjIzl7V24AQJvbLAytnEI4isQphKNInEI4isQphKNInEI4isQphKP41xAK8W354Qm+nb9XtWveC/KS+q0G3/Ju+bRPSMb59nUmb68VNDV5nM6ZX1qksUC9TGPY4fV0vDa3iWYmTtrn+LQzuLXAbZtTs+/n1wGe+dML2t+vCn7vUwVul7T4W2GrxdtrDBTslk5yxCe7pMazSxpN3vohmuDWmE+yEyID9musevwZgE+WDkMrpxCOInEK4SgSpxCOInEK4SgSpxCOInEK4Si+Vorn8SySjRLv/AvYs1nyw9yaCXg8Aybo8xvSqPI9+5ZnL9K0WuLtEa49+yKNhXu8UFdqiG/Zf/wzv0RjiYLdCnrh8kt0TjbPbaxmh9sU9xZ4NkitbS9eVhzmnb77PkXZdtZ5i4THTtvtIwCIt+0Fzyo+WT+9Fn9OaxWetdTs8U7f8XSWxsKhjHW8UufZU+k0t9MYWjmFcBSJUwhHkTiFcBSJUwhHkTiFcBSJUwhH8bVStnb51rDX56fsp6bsp/bXH9h7qABAIpalsdgAt2A2d3n/ktigfV42ym0PpHnxr9ffnKexT138BRpLJrgd8ZWvfNk6fmf+Lp0zlOH9S7ZK/H7UfIqyDcTtxa7OzHLbo1wu01gmwa2Dco/Hql379QfDfB1p7fPP7PV4Ya14gj8HPo8cjGfP4MmmeIZU3+M2HEMrpxCOInEK4SgSpxCOInEK4SgSpxCO4rtbmxzku4KFQV4/JkG2ujauztE58Sg/RH1q9iiNpQv8I+zsNe3XsXWTztno8QP9kVFexyaZ5Dt/psYP9ZfW7Dvit27xneGJIt9RDvl02E7l+PdZHLHvsHd7/OB4x+OxsWMnaGy3zg/FN2Hf1Sz4dNjOHuW74V1etgrdKH92DPh2bYkkfSSTvBs2jI9DQNDKKYSjSJxCOIrEKYSjSJxCOIrEKYSjSJxCOIqvlRII8S37RosfKF6Zt9foGStO0jm1/TKNtVq8NUEgyre8V7sl63h+eJjOeWKEWwB7S/wz97fXaOzqA94uIJ+zWxhel9svxuNfW6Fgr28DAD1wmwWe/Xd6Z7dMp1Tr3Epp+LRcQJ/Pq3XtNkXCcJsiA25TrK1y26YT4ckbE+P2WkYAEInYP1upxD9XIsnrHDG0cgrhKBKnEI4icQrhKBKnEI4icQrhKBKnEI7ia6U0anzrPRrhU+MpewbBUMZuGwAAhvnW9bWrvI1Ay6cD8WjRbpkkBvm1JyI88yRa59vhd+Zu8NfM807aP3H+vHW8uc3rN/UNbyNQ73ELJhT128632wPxJLeqeuCvt73Ls3sGh/n9T5O6Pq02X0e2fdpoLyxVaGxkcoTGqlX+YMXidgumXuNWW7XKbRaGVk4hHEXiFMJRJE4hHEXiFMJRJE4hHEXiFMJRfK2U3ZK9QBYARH225XstuwXz3Lcv0zmjI3kaa9R4VkoowjMSNkv2rJRQm1d9yg7xYlGtOs+0MHH+mks7yzR2sjdjHf/gpafonCv379OY1+PX2OqX+byQ3Z7hxgwwNsILr/UNt1I2NngGzweeumAdX1nklsj113kxtNknJ2nMxLm9sb3F7ap80G7RZTM8c2avUqYxhlZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlNde5T1FRlfHaOyJ2WPW8USK2x77tTKN5Qs8YyU3OEpjlao9s6NKxgFgbPAIjUXr/DOvbS/R2N25FRrr1J+xjh+b5NfhxbnBsXj3No2FY30aG07araB0MstfL8Dto2qTZ4pMjE/SWLdpXy92N3mRtME8L0SXH+QFz7phbpdkszyD6sGaPWNlY3Odzhk/wq1ChlZOIRxF4hTCUSROIRxF4hTCUSROIRzFd7d2dLRIYxurNRqrT9p3s45N853VgOGH2ytl/l4P1hZobPyI/f1aMb7bOb/Mu28HVnmNmLs3+LxULk1jQxP23cT1Bj8c3vf4LumZs3xHudriO54myO4Jf6+VZb5DPTjCO1HXa3wn9+qr9t3mkOE7shMTvBbQKy/y3etQnK9NJ87w1wyG7M/jufN8Ts2ndQVDK6cQjiJxCuEoEqcQjiJxCuEoEqcQjiJxCuEovlbK9DQ/fJ2J2+vzAEA6bi/hHzR8W75U4h2Ik3FemyWY5bZIJGKP9Zu8o3GzxA9Dh/s+3aYj3DpoN3lbC1anKZziv5t7FX5wf5tfPpJZ3moCffs11qJ1OmW/UaaxqQw/6D3i03376spd63inwe99p8nrJnldbn/FwzwRo13h1kd5035PukNcTsanizZDK6cQjiJxCuEoEqcQjiJxCuEoEqcQjiJxCuEovlbK9q6PXZLlmRYPth5YxxMJbjdsrXMPoBHjFsxjZ8ZpzITs2+hLG2U652jxJL+OPX6N2zneCXl/n2/LL92315157PwEnTNzgnfK3ihv0ljap9XEyvKudbzV5C05xsZ4BszeLrc3bl2/QmPHp+yvGY3wdeTyi4s0ls5maezocZ5F0u/yLKkEsQpLGzzrJxL3sbEIWjmFcBSJUwhHkTiFcBSJUwhHkTiFcBSJUwhH8bVSEOLZFH4zw1H7af96m2cW3LnjY9tEuQUTCfEO29m8PRMgk7N3JgaA0naZx9Z55sx+l9slYz6tFZbX7DZArcGLmg207Fv5ABDo8lhjj7dj8Dz7dxMM8WJc0SjP+Niv+nQj9/nOEil7G4SJozzLZX6RX0elwu/jis/3GYvxBzydtNsiG2vcdlpc4QXb8AX7sFZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlOMnecZHu8mtg0TMblUsL5bpnHiOF31q1fh2+Oo6t2A6xp45UxzO0jkrmz4ZDmmeWeAFuYURyfHbXByw36tEhs95/vJlGosHeRfwZJb3GylM2a2KdotbKc06t0uiPgXPjszyHjzXr71pHV9Y4rbH+AmeHZNv8WwhnyQpLM2v0tj+nv3Z73e5RVTZ49fB0MophKNInEI4isQphKNInEI4isQphKNInEI4iq+VUtqyF30C/It1zd1fsI6Xd3lWRDrPt6ELM9weCHg8I6HeqVjHx48/Sec0G9we2NngPUoCAX4rYwPcJrp77751PLjuYwEYXqiL9akBgFCY9+votOwZFbEEt19qe/zeez0fC6a1w19z3/6MNNu8Z0s3zJ/T4kSBxjpdfo83ScEzABjJ2+2v3RKfMzTIvxeGVk4hHEXiFMJRJE4hHEXiFMJRJE4hHMV3t7Y4ysvVV6v8MHoyad/hW1nih4nPneNtECIhvss7d9u+2wkAU8ftLQ0ebPOWBe0g34EcKPBOyLeu8+vIjPD6N8dP2lsrdGplOqdV5bWY6g17ewcA6LT4TnSkYf+dDid9ujV7vMbUyy9dpbFgkO8aT588Zh3P5VJ0zvwcr8+zu12lsUSY38ezM9M0liSXEonz58OE+OF8hlZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlECQd3IuFvnW9sqS/WBzs85fr13nh5AH4vxQfKTHD2Y/uGPvNPygx+sORRP8vcanuLV04d3vorFChtceWrxutz7iXR+74RSv7bS0xq2g+wv2juMAEB2wf5/7PV4rKhriyQ9jRW4fhXwsjGIxax2vVMt0znCGd1mvVfn96Ef4dWTG+bpVITZXvRymc/Z27XP80MophKNInEI4isQphKNInEI4isQphKNInEI4ivF8MguEEI8OrZxCOIrEKYSjSJxCOIrEKYSjSJxCOIrEKYSj/DcMRJ1bAu63tAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "