diff --git a/tutorials/notebook/linear_regression.ipynb b/tutorials/notebook/linear_regression.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..026e1dfd4ddd698bba9fd8c14900ea4027738487
--- /dev/null
+++ b/tutorials/notebook/linear_regression.ipynb
@@ -0,0 +1,711 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##
使用MindSpore实现简单线性函数拟合"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 概述"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "回归问题算法通常是利用一系列属性来预测一个值,预测的值是连续的。例如给出一套房子的一些特征数据,如面积、卧室数等等来预测房价,利用最近一周的气温变化和卫星云图来预测未来的气温情况等。如果一套房子实际价格为500万元,通过回归分析的预测值为499万元,则认为这是一个比较好的回归分析。在机器学习问题中,常见的回归分析有线性回归、多项式回归、逻辑回归等。本例子介绍线性回归算法,并通过MindSpore进行线性回归AI训练体验。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "主要流程如下:\n",
+ "\n",
+ "1. 生成数据集\n",
+ "2. 定义前向传播网络\n",
+ "3. 定义反向传播网络\n",
+ "4. 定义线性拟合过程的可视化函数\n",
+ "5. 执行训练"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 生成数据集"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 定义数据集生成函数\n",
+ "\n",
+ "`get_data`用于生成训练数据集和测试数据集。由于拟合的是线性数据,假定要拟合的目标函数为:$y=2x+3$,那么我们需要的训练数据集应随机分布于函数周边,这里采用了`y=2x+3+noise`的方式生成,其中`noise`为遵循标准正态分布规律的随机数值。"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import mindspore as ms\n",
+ "from mindspore import Tensor\n",
+ "from mindspore import context\n",
+ "from mindspore.train import Model\n",
+ "\n",
+ "context.set_context(mode=context.PYNATIVE_MODE, device_target=\"GPU\")\n",
+ " \n",
+ "def get_data(num,w=2.0, b=3.0):\n",
+ " np_x = np.ones([num, 1])\n",
+ " np_y = np.ones([num, 1])\n",
+ " for i in range(num):\n",
+ " x = np.random.uniform(-10.0, 10.0)\n",
+ " np_x[i] = x\n",
+ " noise = np.random.normal(0, 1)\n",
+ " y = x * w + b + noise\n",
+ " np_y[i] = y\n",
+ " return Tensor(np_x,ms.float32), Tensor(np_y,ms.float32)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "对于数据生成函数我们将有以下两个作用。\n",
+ "\n",
+ "1. 生成训练数据,对模型函数进行训练。\n",
+ "2. 生成验证数据,在训练结束后,对模型函数进行精度验证。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 生成测试数据"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "使用数据生成函数`get_data`随机生成50组验证数据,并可视化展示。"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEICAYAAAC6fYRZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAX5ElEQVR4nO3dfZBcVZ3G8edJEFaUVTSTEEhiwALWaNWCdkVejARBBdY1YIkGt3YpdY2olC+lVYtSpZTW1uouirWlC4aSFbeUlxWQLIK8SSBbvMgEA4QNLAFxGRInk6ASXwprMr/94942neZ2pnv63u7bt7+fqq7pvvdOn1N3ep45c+455zoiBACopln9rgAAoDiEPABUGCEPABVGyANAhRHyAFBhhDwAVBghDwAVRsgDKdtrbf99h9+z2HbY3qeoegHdIOQxkGw/ZfsPtn/b8PhGv+u1N7aX2x7rdz0wXGh9YJD9dUTc1u9KAGVGSx6VYXs/27+2/bqGbSNpi3+u7QNt32B7wvav0ucLOixjtu0LbW+3/aSkv2ra/37bm2zvtP2k7Q+n218i6SZJBzf853Gw7aW270nrvdX2N2zvm8PpACQR8qiQiHhe0rWSzmrY/B5Jd0bENiWf93+X9CpJiyT9QVKnXTwfkvQOSUdLqkl6d9P+ben+P5f0fkkX2X59RPxO0qmStkTES9PHFkm7JH1K0hxJx0o6SdJHO6wT0BIhj0H2w7QFXH98SNL3tWfIvy/dpojYERHXRMTvI2KnpH+UdEKHZb5H0tcj4umIeFbSPzXujIgfRcQTkbhT0i2SlrV6s4hYHxH3RsRkRDwl6VszqBPQEn3yGGSnN/fJ254l6cW23yjpl5KOknRdum9/SRdJOkXSgem3HGB7dkTsarPMgyU93fD6F03lnyrpC5KOUNKI2l/Sw63ezPYRkr6m5L+C/ZX8Tq5vsy7AtGjJo1IiYkrS1Upa8++TdEPaapekT0s6UtIbI+LPJb053e4OitgqaWHD60X1J7b3k3SNpAslzYuIl0u6seH9s9b1vljSo5IOT+v0uQ7rA+wVIY8q+r6k90r6m/R53QFK+uF/bfsVSlrcnbpa0sdtL7B9oKTzGvbtK2k/SROSJtNW/dsa9o9LeqXtlzXV6TlJv7X9F5I+MoM6AS0R8hhk/9U0Tv46SYqI+yT9TknXyk0Nx39d0oslbZd0r6Qfz6DMSyXdLOlBSQ8oudCrtNydkj6u5A/Br5T8J7GmYf+jkq6Q9GR6DeFgSZ9Jj9uZvvdVM6gT0JK5MxQAVBcteQCoMEIeaGL7kqZuoPrjkn7XDegU3TUAUGGlGic/Z86cWLx4cb+rAQADZf369dsjYiRrX6lCfvHixRodHe13NQBgoNj+Rat99MkDQIUR8gBQYYQ8AFQYIQ8AFUbIA0CFEfIAUGGEPAD029SUND4uFTA5lZAHgH6ampJOPFFasEBavjx5nSNCHgD6aWJCuvtuaXIy+ToxkevbE/IA0E9z50rHHSfts0/yde7cXN++VMsaAMDQsaU77kha8HPnJq9zRMgDQL/NmiXNm1fMW3f7BrYX2r7D9ibbj9j+RLr9FbZvtf14+vXA7qsLAOhEHn3yk5I+HRGvkXSMpI/ZXqLkBse3R8Thkm7Xnjc8BgD0QNchHxFbI+KB9PlOSZskHSJphaTL08Mul3R6t2UBADqT6+ga24slHS3pPknzImKrlPwhkJR5ydj2Ktujtkcnch46BADDLreQt/1SSddI+mREPNfu90XE6oioRURtZCTzxiYAgBnKJeRtv0hJwH8vIq5NN4/bnp/uny9pWx5lAQDal8foGkv6tqRNEfG1hl1rJJ2dPj9b0vXdlgUA6Ewe4+SPl/S3kh62vSHd9jlJX5Z0te0PSvo/SWfmUBYAoANdh3xE/LekVlO0Tur2/QEAM8faNQBQYYQ8ANS1u657geu/542QBwApCe7ly6VDDpFOOKH1uu4Fr/+eN0IeAKSkZb5unbRrV/J1fDz7uILXf88bIQ8AUrLEb32Z38bnzQpe/z1vhDwASMlSv8uWJeG9bFnrpX/r67+PjUlr1+a+/nveWE8eAKTObt5R4PrveSPkAaBugMK7XXTXAECzARoiOR1CHgAaDdgQyekQ8gDQaMCGSE6HkAeARgM2RHI6XHgFMBymptobOdPJKJsBQEseQPV12s9eH2Uz4AEvEfIABkkno14aj61YP3snCHkAg6GT1njzsXPmVKqfvRP0yQMYDFmt8VYTl5qP3b69Uv3sncjrRt6X2d5me2PDtgtsP2N7Q/o4LY+yAAypTka9zJkj1WrS7Nm7j61QP3sn8mrJf0fSNyR9t2n7RRFxYU5lABhm7Y56mZqS3vIWaXRUWrpU+slPhi7YG+XSko+IuyQ9m8d7AUBL7bTGG7tq7r8/6aoZYkVfeD3X9kNpd86BWQfYXmV71PboxBBd8QZQkIpNZupWkSF/saRXSzpK0lZJX806KCJWR0QtImojIyMFVgfAUBiw9d6LVljIR8R4ROyKiClJl0paWlRZALCHIb3ImqWwkLc9v+HlGZI2tjoWAFCMXEbX2L5C0nJJc2yPSfqCpOW2j5IUkp6S9OE8ygIAtC+XkI+IszI2fzuP9wYAzBzLGgBAhRHyAFBhhDwAVBghDwAVRsgDQIUR8gDKoZMbgqBthDyA/uv09nxoGyEPoP+G+PZ8RSPkAfQfK0cWhtv/Aei/dm8Igo4R8gDKob5yJHJFdw0AVBghDwAVRsgDQIUR8gBQYYQ8gGzMQK0EQh7ACzEDtTJyCXnbl9neZntjw7ZX2L7V9uPp1wPzKAtADzADtTLyasl/R9IpTdvOk3R7RBwu6fb0NYBBwAzUysgl5CPiLknPNm1eIeny9Pnlkk7PoywAOWvse68/l5IZqGNj0tq1zEAdYEX2yc+LiK2SlH7NbArYXmV71PboBP8SAr3V2Pd+wgl79sNLyQxUAn6g9f3Ca0SsjohaRNRGRkb6XR1guDT3vdMPXzlFhvy47fmSlH7dVmBZAGaiue+9k354hlgOhCIXKFsj6WxJX06/Xl9gWQBmonn1x4j2VoKsd/PcfXfyB+GOO5IFxlA6eQ2hvELSPZKOtD1m+4NKwv2tth+X9Nb0NYAyaGyF11d/tPd8vjcMsRwYubTkI+KsFrtOyuP9AeQoj1Z4vZun/h4MsSwt1pMHqmhqqnW3S1YrvNN13LnJx8CgEw2omlZLEtS7aEZG8pno1G7XDvqKljxQNVkt9ZGRPbtobr9d2rGDVvgQoCUPVE3WkgTNwb9jB63wIUFLHqiaen/5+PjuEM/jQune+vlRWrTkgapauVJauDDpl4/obi0alh4eWIQ8UEXj49K6dUn3zLp1yetuLpQyLn5gEfJAFdm7lxuI6L57haWHBxYhD1RF4yzWefOkZcuk2bOTr52Og29W7+dn6eGBQ8gDVdDcZx6RhPEzz0h33plPKDMufiAR8kAVZPWZE8oQIQ9UA33maIFx8kAVsJYMWqAlD5RZJzfmoHsGGQh5oKyYgIQcEPJAWTEBCTkg5IGy4mIqclD4hVfbT0naKWmXpMmIqBVdJjBwshb/4mIqctCrlvyJEXEUAQ9k2FvfOxdT0SW6a4A8dTIapo6+dxSoFyEfkm6xvd72qh6UB/THTEfD0PeOAvViMtTxEbHF9lxJt9p+NCLuqu9Mg3+VJC1atKgH1QEKMtMbZNP3jgIV3pKPiC3p122SrpO0tGn/6oioRURtZGSk6OoAxemmRU7fOwpSaEve9kskzYqInenzt0n6YpFlAn1DixwlVHR3zTxJ1zn5sO8j6fsR8eOCywT6p94iB0qi0JCPiCcl/WWRZQAAWmMIJQBUGCEPABVGyANAhRHyAFBhhDwAVBghDwAVRsgDQIUR8gBQYYQ8AFQYIQ8AFUbIA0CFEfIYPjO5exMwoAh5DI+pKWnr1uSuTZ3evQkYUL24MxTQf/Vb89Xv3CR1dvcmYEAR8hgOjbfms5N137mfKoYA3TUYDo235lu2TBobk9au5e5NqDxa8hgO3JoPQ4qQx/Dg1nwYQoV319g+xfZjtjfbPq/o8gAAuxUa8rZnS/qmpFMlLZF0lu0lRZYJANit6Jb8UkmbI+LJiPijpCslrSi4TABAquiQP0TS0w2vx9Jtf2J7le1R26MTExMFVwcAhkvRIZ81hGGPueQRsToiahFRGxkZKbg6GAgsOwDkpuiQH5O0sOH1AklbCi4Tg6w+M5VlB4BcFB3y90s63PahtveVtFLSmoLLxCBrnJlaX3YAwIwVGvIRMSnpXEk3S9ok6eqIeKTIMjHgGmem1pcdoPsGmLHCJ0NFxI2Sbiy6HFRE88zUiN0Lix13XLJvFqtxAO3itwXlU5+ZatN9A3SJkEe5ZXXfAGgba9eg3FhYDOgKIY/yY2ExYMborgGACiPkAaDCCHnkh/HsQOkQ8shH43IEJ5wgbd1K2AMlQMgjH43j2detkxYtYu0ZoAQIeeSjPp599uxkmCOTl4BSIOSRj/p49rExadkyJi8BJcE4eeRn1izpoIOYvASUCC155K9x7ZlOMDoHyB0hj3LgZiFAIQh5JJpb0Xm2qtt5L1abBApByOOFrejJyfxa1e220FltEiiEo0T9n7VaLUZHR/tdjeEzPp6E8ORkErI/+5l09NG7X4+NzXyBsOb33tt7TU1xwRaYAdvrI6KWta+wlrztC2w/Y3tD+jitqLLQpeZW9JIl+bWqO2mhz/SCLYCWih5CeVFEXFhwGehW1prteQ2DZD14oK8YJ49E85rtea7hznrwQN8UfeH1XNsP2b7M9oFZB9heZXvU9ugEIyoGC+PagdLrKuRt32Z7Y8ZjhaSLJb1a0lGStkr6atZ7RMTqiKhFRG1kZKSb6qCXGNcODISuumsi4uR2jrN9qaQbuikLJZM1rp0uGaB0ihxdM7/h5RmSNhZVFrqQ1eXSTjcM49qBgVBkn/w/237Y9kOSTpT0qQLLwkxkdbm02w3TuOrk2rWMmgFKislQwyxropLU/uQlAKXQl8lQGABZXS50wwCVwjj5YdZqohKTl4DKoCVfVe2OYc9aSoDlBYDKIOSriDHsAFKEfBXtbW12ZqkCQ4WQr6JWF09p4QNDhwuvVdTqgiqzVIGhQ0u+qrIunjI8Ehg6tOSHCWu7A0OHkB82rO0ODBW6awCgwgh5AKgwQh4AKoyQB4AKI+T7idmnAApGyPcLs08B9AAh3y97W18GAHLSVcjbPtP2I7anbNea9n3W9mbbj9l+e3fVrCBmnwLogW4nQ22U9C5J32rcaHuJpJWSXivpYEm32T4iInZ1WV51MPsUQA901ZKPiE0R8VjGrhWSroyI5yPi55I2S1raTVmVxM05ABSsqD75QyQ93fB6LN32ArZX2R61PTpBvzQA5Gra7hrbt0k6KGPX+RFxfatvy9iWOU4wIlZLWi1JtVqNsYQAkKNpQz4iTp7B+45JWtjweoGkLTN4HwBAF4rqrlkjaaXt/WwfKulwST8tqKzqYHIUgJx1O4TyDNtjko6V9CPbN0tSRDwi6WpJ/yPpx5I+xsiaaTA5CkABHCVqNdZqtRgdHe13NfpjfDwJ+MnJZOz82BjrvgNoi+31EVHL2seM17JgchSAAnBnqLJgchSAAhDyZcKt+QDkjO6aojFiBkAfEfJ5ag50RswA6DNCPi9Zgc5ywgD6jJDPS1agM2IGQJ8R8nnJCvT6iJmxMWntWkbMAOg5RtfkpdUQSEbMAOgjQj5PBDqAkqG7plMMiQQwQAj5TkxOSm96E0MiAQwMumvaNTUlLVsm3Xtv8vruu5MW/axZLEMAoLRoybdrYkK6//7dr2s16b3vpVUPoNQI+XbNnSsdf7w0e7Z0zDHStddK99zDRCcApUZ3Tbuah0hKyXj4u+9mohOA0iLkO9E8RJKlgQGUXLe3/zvT9iO2p2zXGrYvtv0H2xvSxyXdVzUHeQ9/rIc+AQ+gpLrtk98o6V2S7srY90REHJU+zumynO6xIiSAIdRVyEfEpoh4LK/K5K6x5c6KkACGUJGjaw61/TPbd9pe1uog26tsj9oencgzeJtb7nPmsCIkgKEz7YVX27dJOihj1/kRcX2Lb9sqaVFE7LD9Bkk/tP3aiHiu+cCIWC1ptSTVarWZd5bX12+vXwRtbrlv386FUgBDZ9qWfEScHBGvy3i0CnhFxPMRsSN9vl7SE5KOyK/aTbL627OW/uVCKYAhU8gQStsjkp6NiF22D5N0uKQniyhLUnZ/+7x5tNwBDL1uh1CeYXtM0rGSfmT75nTXmyU9ZPtBST+QdE5EPNtdVfei1R2YaLkDGHKOEi2ZW6vVYnR0dGbf3NwnDwBDwvb6iKhl7avO2jX1VnsE670DQKo6IS8x4QkAmlQr5JnwBAB7qFbIt7oACwBDqlqrUDYvB8wFWABDrlohL71wOWAAGGLV6q4BAOyBkAeACiPkAaDCCHkAqDBCHgAqjJAHgAor1QJltick/WKaw+ZI2t6D6nSDOuaj7HUse/0k6piXstfxVRExkrWjVCHfDtujrVZbKwvqmI+y17Hs9ZOoY14GoY6t0F0DABVGyANAhQ1iyK/udwXaQB3zUfY6lr1+EnXMyyDUMdPA9ckDANo3iC15AECbCHkAqLBShrztM20/YnvKdq1p32dtb7b9mO23t/j+Q23fZ/tx21fZ3rfg+l5le0P6eMr2hhbHPWX74fS4Gd6xfMZ1vMD2Mw31PK3Fcaek53az7fN6WL9/sf2o7YdsX2f75S2O6/k5nO6c2N4v/QxsTj93i3tRr4byF9q+w/am9PfmExnHLLf9m4af/+d7Wce0Dnv92Tnxr+l5fMj263tcvyMbzs8G28/Z/mTTMX0/jx2LiNI9JL1G0pGS1kqqNWxfIulBSftJOlTSE5JmZ3z/1ZJWps8vkfSRHtb9q5I+32LfU5Lm9OmcXiDpM9McMzs9p4dJ2jc910t6VL+3Sdonff4VSV8pwzls55xI+qikS9LnKyVd1eOf7XxJr0+fHyDpfzPquFzSDf347LX7s5N0mqSbJFnSMZLu62NdZ0v6pZJJRqU6j50+StmSj4hNEfFYxq4Vkq6MiOcj4ueSNkta2niAbUt6i6QfpJsul3R6kfVtKvs9kq7oRXkFWCppc0Q8GRF/lHSlknNeuIi4JSIm05f3SlrQi3Lb0M45WaHkcyYln7uT0s9CT0TE1oh4IH2+U9ImSYf0qvwcrZD03UjcK+nltuf3qS4nSXoiIqabgV96pQz5vThE0tMNr8f0wg/zKyX9uiEwso4pyjJJ4xHxeIv9IekW2+ttr+pRnRqdm/4bfJntAzP2t3N+e+EDSlp0WXp9Dts5J386Jv3c/UbJ57Dn0q6ioyXdl7H7WNsP2r7J9mt7WrHEdD+7snz+pOQ/slaNtX6fx4707fZ/tm+TdFDGrvMj4vpW35axrXkMaDvHdKzN+p6lvbfij4+ILbbnSrrV9qMRcVe3dWunjpIulvQlJefiS0q6lT7Q/BYZ35vbGNt2zqHt8yVNSvpei7cp9Bxm6NtnrlO2XyrpGkmfjIjnmnY/oKTr4bfp9ZgfSjq8x1Wc7mdXlvO4r6R3Svpsxu4ynMeO9C3kI+LkGXzbmKSFDa8XSNrSdMx2Jf/m7ZO2qrKO6dh09bW9j6R3SXrDXt5jS/p1m+3rlHQF5BZQ7Z5T25dKuiFjVzvnd8baOIdnS3qHpJMi7QDNeI9Cz2GGds5J/Zix9HPwMknPFlinF7D9IiUB/72IuLZ5f2PoR8SNtv/N9pyI6NmiW2387Ar9/HXgVEkPRMR4844ynMdODVp3zRpJK9PRDIcq+Qv608YD0nC4Q9K7001nS2r1n0GeTpb0aESMZe20/RLbB9SfK7nQuLEH9aqX39i3eUaLsu+XdLiT0Un7KvmXdU2P6neKpH+Q9M6I+H2LY/pxDts5J2uUfM6k5HP3k1Z/pIqQ9v9/W9KmiPhai2MOql8nsL1Uye/+jh7WsZ2f3RpJf5eOsjlG0m8iYmuv6tig5X/k/T6PM9LvK79ZDyUhNCbpeUnjkm5u2He+ktEOj0k6tWH7jZIOTp8fpiT8N0v6T0n79aDO35F0TtO2gyXd2FCnB9PHI0q6KHp5Tv9D0sOSHlLyyzS/uY7p69OUjM54opd1TH9WT0vakD4uaa5fv85h1jmR9EUlf5Ak6c/Sz9nm9HN3WI9/tm9S0q3xUMP5O03SOfXPpKRz03P2oJIL28f1uI6ZP7umOlrSN9Pz/LAaRtb1sJ77KwntlzVsK815nMmDZQ0AoMIGrbsGANABQh4AKoyQB4AKI+QBoMIIeQCoMEIeACqMkAeACvt/V7N/5YFcCdgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "