diff --git a/tutorials/source_en/advanced_use/quantization_aware.md b/tutorials/source_en/advanced_use/quantization_aware.md index d554ee267ce34dab4dbf7cf1ffcbd54c2a49cd91..91e94d61367c98f97a5a36e71f44fda3cafa61df 100644 --- a/tutorials/source_en/advanced_use/quantization_aware.md +++ b/tutorials/source_en/advanced_use/quantization_aware.md @@ -82,10 +82,10 @@ Next, the LeNet network is used as an example to describe steps 3 and 6. Define a fusion network and replace the specified operators. -1. Use the `nn.Conv2dBnAct` operator to replace the two operators `nn.Conv2d` and `nn.Relu` in the original network model. -2. Use the `nn.DenseBnAct` operator to replace the two operators `nn.Dense` and `nn.Relu` in the original network model. +1. Use the `nn.Conv2dBnAct` operator to replace the two operators `nn.Conv2d` and `nn.ReLU` in the original network model. +2. Use the `nn.DenseBnAct` operator to replace the two operators `nn.Dense` and `nn.ReLU` in the original network model. -> Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.Batchnorm` and `nn.Relu`, the preceding two replacement operations must be performed as required. +> Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.BatchNorm*` and `nn.ReLU`, the preceding two replacement operations must be performed as required. The definition of the original network model LeNet5 is as follows: diff --git a/tutorials/source_zh_cn/advanced_use/quantization_aware.md b/tutorials/source_zh_cn/advanced_use/quantization_aware.md index 19f4d6a4c762b6decf8ab96d26525e3647680900..6d4a06c6d7c3f96c6564632a5a5f8f6dd7f7bf6d 100644 --- a/tutorials/source_zh_cn/advanced_use/quantization_aware.md +++ b/tutorials/source_zh_cn/advanced_use/quantization_aware.md @@ -82,10 +82,10 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替 定义融合网络,在定义网络后,替换指定的算子。 -1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的2个算子`nn.Conv2d`和`nn.Relu`。 -2. 使用`nn.DenseBnAct`算子替换原网络模型中的2个算子`nn.Dense`和`nn.Relu`。 +1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的2个算子`nn.Conv2d`和`nn.ReLU`。 +2. 使用`nn.DenseBnAct`算子替换原网络模型中的2个算子`nn.Dense`和`nn.ReLU`。 -> 无论`nn.Dense`和`nn.Conv2d`算子后面有没有`nn.BatchNorm`和`nn.Relu`,都要按规定使用上述两个算子进行融合替换。 +> 无论`nn.Dense`和`nn.Conv2d`算子后面有没有`nn.BatchNorm*`和`nn.ReLU`,都要按规定使用上述两个算子进行融合替换。 原网络模型LeNet5的定义如下所示: