# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging from gen_random import random_gaussian import numpy as np from akg.utils import kernel_exec as utils from test_op import vector_matmul logging.basicConfig(level=logging.DEBUG) def np_matmul(matrix_a, matrix_b, trans_a=False, trans_b=False): if trans_a: matrix_a = matrix_a.transpose(1, 0) if trans_b: matrix_b = matrix_b.transpose(1, 0) m, k_a = matrix_a.shape k_b, n = matrix_b.shape if k_a != k_b: raise RuntimeError("matrix_a: %d %d vs matrix_b: %d %d" % (m, k_a, k_b, n)) result = np.dot(matrix_a, matrix_b) return result def gen_data(m, n, k, trans_a, trans_b, dtype): shape_x, shape_y = vector_matmul.get_shape(m, n, k, trans_a, trans_b) matrix_a = random_gaussian(shape_x, miu=0.5, sigma=0.01).astype(dtype) # matrix_b = random_gaussian(shape_y, miu=0.5, sigma=0.01).astype(dtype) # matrix_a = np.ones(shape_x, dtype=dtype) matrix_b = np.ones(shape_y, dtype=dtype) res = np_matmul(matrix_a, matrix_b, trans_a, trans_b) return matrix_a, matrix_b, res def get_name(caseIndex=1, name="leftMatrix", m=0, n=0, k=0, trans_a=False, trans_b=False): res = "{}_{}_{}_{}_{}_{}_{}.bin".format(caseIndex, name, m, n, k, trans_a, trans_b) return res def read_from_file(case_index, m, n, k, trans_a, trans_b, dtype): cur_path = os.path.abspath('.') benchmark_path, tmp = cur_path.split("ci_test") benchmark_path += "ci_test/AT-Benchmark/poly_benchmark/vector_matmul_benchmark/" # print benchmark_path left_matrix_name = get_name(case_index, "leftMatrix", m, n, k, trans_a, trans_b) right_matrix_name = get_name(case_index, "rightMatrix", m, n, k, trans_a, trans_b) result_name = get_name(case_index, "result", m, n, k, trans_a, trans_b) m_a_shape, m_b_shape = vector_matmul.get_shape(m, n, k, trans_a, trans_b) m_a = np.fromfile(benchmark_path + left_matrix_name, dtype=dtype).reshape(m_a_shape) m_b = np.fromfile(benchmark_path + right_matrix_name, dtype=dtype).reshape(m_b_shape) res_shape = (m, n) res = np.fromfile(benchmark_path + result_name, dtype=dtype).reshape(res_shape) return m_a, m_b, res def vector_matmul_data(case_index, m, n, k, trans_a, trans_b, read_data, dump_data, dtype, debug_logging=False): m_a = () m_b = () bench_mark = () if read_data: logging.debug("read from file!") m_a, m_b, bench_mark = read_from_file(case_index, m, n, k, trans_a, trans_b, dtype) else: m_a, m_b, bench_mark = gen_data(m, n, k, trans_a, trans_b, dtype) if dump_data: left_matrix_name = get_name(case_index, "leftMatrix", m, n, k, trans_a, trans_b) right_matrix_name = get_name(case_index, "rightMatrix", m, n, k, trans_a, trans_b) result_name = get_name(case_index, "result", m, n, k, trans_a, trans_b) m_a.tofile(left_matrix_name) m_b.tofile(right_matrix_name) bench_mark.tofile(result_name) if debug_logging: logging.debug("m_a shape:{}".format(m_a.shape)) logging.debug("m_b shape:{}".format(m_b.shape)) logging.debug(type(m_a)) return m_a, m_b, bench_mark def result_compare(actual, bench_mark, batch_tuple, M, N, K, r_tol=5e-3): output_shape = (M, N) error = 0 count = 0 lastErr = -2 continueErr = 0 maxContinue = -1 maxEnd = 0 logging.debug(actual.shape) logging.debug(bench_mark.shape) for m in range(output_shape[0]): for n in range(output_shape[1]): a = actual[m, n] b = bench_mark[m, n] if(abs(a - b) > abs(b) * r_tol): error += 1 if lastErr + 1 == count: continueErr += 1 else: if continueErr > maxContinue: maxContinue = continueErr maxEnd = lastErr continueErr = 1 lastErr = count # if a != 0.0: logging.debug("count: %6d expect: %20f actual: %20f %20.2f%%" % (count, b, a, abs(b - a) / b * 100)) count += 1 if continueErr > maxContinue: maxContinue = continueErr maxEnd = lastErr logging.debug("error num: %d/%d (%.2f%%)" % (error, count, 100.0 * error / count)) logging.debug("longest error range: [%d, %d]" % (maxEnd - maxContinue + 1, maxEnd)) if maxContinue >= 16: return False logging.debug("\n\n******************** test ok *****************\n\n") return True def vector_matmul_run(case_index, m, n, k, trans_a, trans_b, read_data, dump_data, dtype, kernel_name, attrs): batch_tuple = (1, ) # m = (m+15)//16*16 # n = (n+15)//16*16 # k = (k+15)//16*16 mod, out_shape = vector_matmul.vector_matmul(m, n, k, trans_a, trans_b, dtype, kernel_name, attrs) utils.create_cce(kernel_name, "./", mod.imported_modules[0].get_source()) # Generate data m_a, m_b, bench_mark = vector_matmul_data(case_index, m, n, k, trans_a, trans_b, read_data, dump_data, dtype) # mod launch output = np.full(out_shape, np.nan, dtype=dtype) output = utils.mod_launch(mod, (m_a, m_b, output), expect=batch_tuple) # compare result compare_result = result_compare(output, bench_mark, batch_tuple, m, n, k, r_tol=1e-2) return (m_a, m_b), output, bench_mark, compare_result