# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tensorio import compare_tensor import numpy as np from akg.utils import kernel_exec as utils from test_run import maxpool_grad_run from akg.ops.nn.maxpool_ad import maxpool_ad from akg.ops.nn.maxpool_ad import maxpool_ad_manual_schedule_all_max from akg.ops.nn.maxpool_ad import maxpool_ad_no_custom_diff_manual_schedule_all_max from akg.ops.nn.maxpool_ad import maxpool_ad_no_custom_diff_poly_all_max from akg.utils.dsl_create import cal_pad_shapes_by_strategy import itertools from base import get_rtol_atol from gen_random import random_gaussian def maxpool_ad_run(shape, kernel, stride, pad, dtype, optimized, polyhedral=False, first_max=True, attrs=None): expect, head, input, output, forward, mask = gen_data(dtype, kernel, pad, shape, stride, first_max) if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) if polyhedral: if optimized: if first_max: raise Exception("ERROR: no DSL with poly support for first_max") else: raise Exception("ERROR: no DSL with poly support for all_max") else: if first_max: raise Exception("ERROR: no AD with poly support for first_max") else: mod = utils.op_build_test(maxpool_ad_no_custom_diff_poly_all_max, [head.shape, shape], [dtype, dtype], kernel_name="maxpool_ad_no_custom_diff_poly_all_max", op_attrs=[kernel, stride, pad], attrs=attrs, log_cce=False, dump_cce=True, polyhedral=polyhedral) output = utils.mod_launch(mod, [head, input, output], expect=expect) else: if optimized: if first_max: mod = utils.op_build_test(maxpool_ad, [head.shape, shape, forward.shape, mask.shape], [dtype, dtype, dtype, dtype], kernel_name="maxpool_ad_first_max", op_attrs=[kernel, stride, pad], attrs=attrs, log_cce=False, dump_cce=True, polyhedral=polyhedral) output = utils.mod_launch(mod, [head, input, forward, mask, output], expect=expect) else: mod = maxpool_ad_manual_schedule_all_max(shape, kernel, stride, pad, dtype, attrs=attrs, polyhedral=polyhedral) output = utils.mod_launch(mod, [head, input, forward, output], expect=expect) else: if first_max: raise Exception("ERROR: no AD with mansch support for first_max") else: mod = utils.op_build_test(maxpool_ad_no_custom_diff_manual_schedule_all_max, [head.shape, shape], [dtype, dtype], kernel_name="maxpool_ad_no_custom_diff_manual_schedule_all_max", op_attrs=[kernel, stride, pad], attrs=attrs, log_cce=False, dump_cce=True, polyhedral=polyhedral) output = utils.mod_launch(mod, [head, input, output], expect=expect) if 'tuning' in attrs.keys(): if t: return mod, expect, (head, input, output) else: return mod rtol, atol = get_rtol_atol("maxpool_grad", dtype) return [head, input], output, expect, compare_tensor(output, expect, rtol=rtol, atol=atol, equal_nan=True) def benchmark(x, y, dy, kernel, stride, pad, behaviour=0): kernel_h, kernel_w = kernel stride_h, stride_w = stride [pad_h_head, pad_h_tail, pad_w_head, pad_w_tail], _ = cal_pad_shapes_by_strategy(x.shape, kernel, stride, pad) N, C1, H, W, C0 = x.shape pad_shape = (N, C1, H + pad_h_tail + pad_h_head, W + pad_w_tail + pad_w_head, C0) padx = np.full(pad_shape, 0, dtype=x.dtype) padx[:, :, pad_h_head:(pad_h_head + H), pad_w_head:(pad_w_head + W), :] = x dx = np.zeros(padx.shape, dtype=x.dtype) _, _, yH, yW, _ = y.shape mask = np.zeros((N, C1, kernel_h, kernel_w, yH, yW, C0)) if behaviour == 0: for n in range(N): for c1 in range(C1): for yh in range(yH): for yw in range(yW): for c0 in range(C0): out_maxpool1 = y[n, c1, yh, yw, c0] head_maxpool1 = dy[n, c1, yh, yw, c0] for kh,kw in itertools.product(range(kernel_h), range(kernel_w)): if padx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] == out_maxpool1: dx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] += head_maxpool1 mask[n, c1, kh, kw, yh, yw, c0] = 1.0 break elif behaviour == 1: for n in range(N): for c1 in range(C1): for yh in range(yH): for yw in range(yW): for c0 in range(C0): out_maxpool1 = y[n, c1, yh, yw, c0] head_maxpool1 = dy[n, c1, yh, yw, c0] for kh in range(kernel_h): for kw in range(kernel_w): if padx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] == out_maxpool1: dx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] += head_maxpool1 return dx[:, :, pad_h_head:(pad_h_head + H), pad_w_head:(pad_w_head + W), :], mask def gen_data(dtype, kernel, pad, shape, stride, first_max): if first_max: behaviour = 0 else: behaviour = 1 support_list = {"float16": np.float16, "float32": np.float32, "int32": np.int32} input = random_gaussian(shape, miu=1, sigma=0.1).astype(dtype) y = maxpool_grad_run.maxpool_benchmark(input, kernel, stride, pad).astype(dtype) head = random_gaussian(y.shape, miu=1, sigma=0.1).astype(dtype) expect, mask = benchmark(input, y, head, kernel, stride, pad, behaviour) expect = expect.astype(dtype) mask = mask.astype(dtype) out_shape = expect.shape output = np.full(out_shape, 0.0, dtype) return expect, head, input, output, y, mask