# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import kldiv_loss_grad from gen_random import random_gaussian def kldiv_loss_grad_run(shape, dtype, kernel_name="kldiv_loss_grad", attrs=None): if not utils.product_is_mini(): attrs['enable_align_fix'] = True attrs['enable_multicore'] = True if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(kldiv_loss_grad.kldiv_loss_grad, [shape, shape, shape], [dtype, dtype, dtype], kernel_name=kernel_name, attrs=attrs, dump_cce=True, tuning=t) if t: cur_deriv, output, pre_deriv, prediction, target = gen_data(attrs, dtype, shape) return mod, cur_deriv, (pre_deriv, prediction, target, output) else: return mod else: mod = utils.op_build_test(kldiv_loss_grad.kldiv_loss_grad, [shape, shape, shape], [dtype, dtype, dtype], kernel_name=kernel_name, attrs=attrs, dump_cce=True) cur_deriv, output, pre_deriv, prediction, target = gen_data(attrs, dtype, shape) output = utils.mod_launch(mod, (pre_deriv, prediction, target, output), expect=cur_deriv) return (pre_deriv, prediction, target), output, cur_deriv, compare_tensor(output, cur_deriv, rtol=0.005, atol=0.001) def gen_data(attrs, dtype, shape): # support_list = {"float16": np.float16, "float32": np.float32} target = random_gaussian(shape, miu=0, sigma=1).astype(dtype) target = np.abs(target) prediction = random_gaussian(shape, miu=0, sigma=1).astype(dtype) prediction = np.abs(prediction) # off_set = np.full(prediction.shape, 0.05, dtype) off_set = np.full(prediction.shape, 2, dtype) prediction = np.add(prediction, off_set) target = np.add(target, off_set) pre_deriv = random_gaussian(shape, miu=0, sigma=1).astype(dtype) cur_deriv = np.divide(target, prediction) cur_deriv = np.multiply(cur_deriv, pre_deriv) output = np.full(prediction.shape, np.nan, dtype) return cur_deriv, output, pre_deriv, prediction, target