# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from akg.utils import kernel_exec as utils import numpy as np from akg.topi.util import get_const_tuple from akg.ops.nn import relu from tensorio import compare_tensor from base import get_rtol_atol from akg import tvm import math def compute_blockdim(shape): size = 0 if isinstance(shape, (list, tuple)): for i in shape: size = size * i elif isinstance(shape, int): size = shape else: size = 2 return min(32, math.ceil(size / 8192 + 1)) def relu_run(shape, dtype, rtol, attrs): if attrs is not None and attrs.get("dynamic"): build_shape = [] attrs['enable_post_poly_loop_partition'] = False for i in range(len(shape)): build_shape.append(tvm.var("I" + str(i))) else: build_shape = shape if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(relu.relu, [build_shape], [dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: input_np, expect = gen_data(dtype, shape) return mod, (input_np, expect) else: return mod else: mod = utils.op_build_test(relu.relu, [build_shape], [dtype], kernel_name='relu', attrs=attrs) input_np, expect = gen_data(dtype, shape) output = np.full(expect.shape, np.nan, dtype=expect.dtype) args = [input_np, output] if attrs is not None and attrs.get("dynamic"): for i in range(len(shape)): args.append(shape[i]) block_dim = compute_blockdim(shape) args.append(block_dim) output = utils.mod_launch(mod, args, outputs=(1,), expect=expect) rtol, atol = get_rtol_atol("relu", dtype) return input_np, output, expect, compare_tensor(output, expect, rtol=rtol, atol=atol) def gen_data(dtype, shape): input_np = np.random.uniform(low=-1.0, high=1.0, size=get_const_tuple(shape)).astype(dtype) output_np = input_np * (input_np > 0) return input_np, output_np