# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from test_op import relu6 from tensorio import compare_tensor from gen_random import random_gaussian def relu6_run(shape, dtype, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(relu6.relu6, [shape], [dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: exp_output, input, output = gen_data(dtype, shape) return mod, exp_output, (input, output) else: return mod else: exp_output, input, output = gen_data(dtype, shape) mod = utils.op_build_test(relu6.relu6, [shape], [dtype], kernel_name='relu6', attrs=attrs) acu_output = utils.mod_launch(mod, (input, output), expect=exp_output) # compare result TestCase_Result = compare_tensor(acu_output, exp_output, rtol=5e-03, equal_nan=True) return input, acu_output, exp_output, TestCase_Result def gen_data(dtype, shape): # Result_Numpy input = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) zero = np.full(shape, 0, dtype) six = np.full(shape, 6, dtype) max = np.maximum(input, zero) exp_output = np.minimum(max, six) # inputs and output to hold the data output = np.full(shape, np.nan, dtype) return exp_output, input, output