# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from akg.utils import kernel_exec as utils import numpy as np from test_op import logsoftmax_ad from gen_random import random_gaussian def logsoftmax_ad_run(shape, dtype, axis, kernel_name, attrs=None): if axis != -1: raise("Only support comptation on last axis now") if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(logsoftmax_ad.logsoftmax_ad, [shape], [dtype], [axis], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, input, output = gen_data(dtype, shape) return mod, expect, (input, output) else: return mod else: mod = logsoftmax_ad.logsoftmax_ad(shape, dtype, axis, kernel_name, attrs) expect, input, output = gen_data(dtype, shape) output = utils.mod_launch(mod, (input, output), expect=expect) return input, output, expect, True def gen_data(dtype, shape): input = random_gaussian(shape, miu=1, sigma=0.1).astype(dtype) sub = input - np.max(input, axis=-1, keepdims=True) e_x = np.exp(sub) logexpsum = np.log(np.sum(e_x, axis=-1, keepdims=True)) expect = sub - logexpsum output = np.full(shape, np.nan, dtype) return expect, input, output