# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from test_op import logsigmoid from tensorio import compare_tensor from base import get_rtol_atol from gen_random import random_gaussian def logsigmoid_run(shape, dtype, kernel_name, attrs): input_shape = [shape] input_dtype = [dtype] if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(logsigmoid.logsigmoid, input_shape, input_dtype, kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, input, output = gen_data(dtype, shape) return mod, expect, (input, output) else: return mod else: expect, input, output = gen_data(dtype, shape) mod = utils.op_build_test(logsigmoid.logsigmoid, input_shape, input_dtype, kernel_name=kernel_name, attrs=attrs) output = utils.mod_launch(mod, (input, output), expect=expect) rtol, atol = get_rtol_atol("logsigmoid", dtype) return input, output, expect, compare_tensor(output, expect, rtol=rtol, atol=atol, equal_nan=True) def gen_data(dtype, shape): input_np = random_gaussian(shape, miu=0, sigma=0.5).astype(dtype) expect = np.log(1. / (1. + np.exp(-input_np))) output = np.full(shape, np.nan, dtype) return expect, input_np, output