# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from test_op import logical_and def logical_and_run(shape1, shape2, dtype, kernel_name, attrs, cce_path="./"): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(logical_and.logical_and, [shape1, shape2], [dtype, dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, input1, input2, output = gen_data(shape1, shape2) return mod, expect, (input1, input2, output) else: return mod else: mod = utils.op_build_test(logical_and.logical_and, [shape1, shape2], [dtype, dtype], kernel_name=kernel_name, attrs=attrs) expect, input1, input2, output = gen_data(shape1, shape2) output = utils.mod_launch(mod, (input1, input2, output), expect=expect) return (input1, input2), output, expect, np.array_equal(output, expect) def gen_data(shape1, shape2): input1 = np.random.randint(2, size=shape1, dtype=np.bool) input2 = np.random.randint(2, size=shape2, dtype=np.bool) expect = np.logical_and(input1, input2) output = np.full(expect.shape, False, dtype=np.bool) return expect, input1, input2, output