# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from test_op import leaky_relu from tensorio import compare_tensor from base import get_rtol_atol from gen_random import random_gaussian def leaky_relu_execute(shape, dtype, negative_slop, attrs): exp_output, inputs, args = gen_data(dtype, shape, negative_slop) mod = leaky_relu_compile(shape, dtype, negative_slop, attrs) # result_tvm acu_output = utils.mod_launch(mod, args, expect=exp_output) # compare result rtol, atol = get_rtol_atol("leaky_relu", dtype) TestCase_Result = compare_tensor(acu_output, exp_output, rtol=rtol, atol=atol, equal_nan=True) return inputs, acu_output, exp_output, TestCase_Result def gen_data(dtype, shape, negative_slop): # Result_Numpy inputs = random_gaussian(shape, miu=0, sigma=0.3).astype(dtype) tmp = inputs * negative_slop exp_output = np.maximum(inputs, tmp) # inputs and output to hold the data output = np.full(shape, np.nan, dtype) args = [] args.append(inputs) args.append(output) return exp_output, inputs, args def leaky_relu_compile(shape, dtype, negative_slop, attrs, kernel_name='leaky_relu', runing=False): return utils.op_build_test(leaky_relu.leaky_relu, [shape], [dtype], [negative_slop], kernel_name, attrs=attrs, tuning=runing)